400 research outputs found

    II Jornada sobre edició de textos lietraris catalans (25 de novembre de 2011)

    Get PDF

    The massive multiple system HD 64315

    Get PDF
    The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, around 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901+/-0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569+/-0.0000008 d. We derive masses of 14.6+-2.3 M_\odot for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M_\odot and 10.2 M_\odot, and likely masses aprox. 30 M_\odot. HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90 M_\odot,but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system.Comment: 14 pages, 13 figures, 8 Table

    Un cas d'unió cefalotoracopàgica l'any 1797

    Get PDF

    Mortalitat infantil al Lluçanès en els segles XVI-XVIII.

    Get PDF

    Air quality forecasts on a kilometer-scale grid over complex Spanish terrains

    Get PDF
    The CALIOPE Air Quality Forecast System (CALIOPE-AQFS) represents the current state of the art in air quality forecasting systems of high-resolution running on high-performance computing platforms. It provides a 48 h forecast of NO2, O3, SO2, PM10, PM2.5, CO, and C6H6at a 4 km horizontal resolution over all of Spain, and at a 1 km horizontal resolution over the most populated areas in Spain with complex terrains (the Barcelona (BCN), Madrid (MAD) and Andalusia (AND) domains). Increased horizontal resolution from 4 to 1 km over the aforementioned domains leads to finer textures and more realistic concentration maps, which is justified by the increase in NO2/O3spatial correlation coefficients from 0.79/0.69 (4 km) to 0.81/0.73 (1 km). High-resolution emissions using the bottom-up HERMESv2.0 model are essential for improving model performance when increasing resolution on an urban scale, but it is still insufficient. Decreasing grid spacing does not reveal the expected improvement in hourly statistics, i.e., decreasing NO2bias by only ~ 2 µg m-3and increasing O3 bias by ~ 1 µg m-3. The grid effect is less pronounced for PM10, because part of its mass consists of secondary aerosols, which are less affected than the locally emitted primary components by a decreasing grid size. The resolution increase has the highest impact over Barcelona, where air flow is controlled mainly by mesoscale phenomena and a lower planetary boundary layer (PBL). Despite the merits and potential uses of the 1-km simulation, the limitations of current model formulations do not allow confirmation of their expected superiority close to highly urbanized areas and large emissions sources. Future work should combine high grid resolutions with techniques that decrease subgrid variability (e.g., stochastic field methods), and also include models that consider urban morphology and thermal parameters.Postprint (published version

    A new and simple variable-angle accessory for infrared specular reflectance

    Get PDF
    A simple, low-cost accessory (patent pending) with only two flat mirrors and a new variable-angle mechanism has been developed for infrared specular reflectance measurements. The system allows the angles of incidence to be varied continuously from 15° (near normal incidence) to 85° (near grazing angle) without losing the alignment of the accessory. The reflectivity of boron nitride thin films deposited on metallic substrates has been measured at different angles of incidence to demonstrate the utility of this accessory

    Bioactive peptides generated in the processing of dry-cured ham

    Full text link
    [EN] Peptides and free amino acids are naturally generated in dry-cured ham as a consequence of proteolysis phenomenon exerted by muscle peptidases. The generation of bioactive peptides in different types of dry-cured ham produced in Spain, Italy and China is reviewed in this manuscript. Major muscle proteins are extensively hydrolysed firstly by endogenous endo-peptidases followed by the successive action of exo-peptidases, mainly, triand di-peptidylpeptidases, aminopeptidases and carboxypeptidases. Such proteolysis is very intense and consists of the generation of large amounts of free amino acids and a good number of peptides with different sequences and lengths, some of them exerting relevant bioactivities like angiotensin converting enzyme inhibitory activity, antioxidant activity, di-peptidylpeptidase IV inhibitory activity among other and in vivo antihypertensive, hypoglycemic or anti-inflammatory activity. This manuscript reviews the recent findings showing that dry-cured ham constitutes a good source of natural bioactive peptides that have potential benefit for human health.The research leading to these results received funding from Grant AGL2017-89831-R from the Spanish Ministry of Economy, Industry and Competitivity and FEDER funds The Ramon y Cajal postdoctoral contract to LM is also acknowledged.Toldrá Vilardell, F.; Gallego-Ibáñez, M.; Reig Riera, MM.; Aristoy, M.; Mora, L. (2020). Bioactive peptides generated in the processing of dry-cured ham. Food Chemistry. 321:1-9. https://doi.org/10.1016/j.foodchem.2020.126689S19321Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98, 244-256. doi:10.1016/j.fbp.2016.02.003American Cancer Society (2012) ACS Guidelines for Nutrition and Physical Activity. https://www.cancer.org/healthy/eat-healthy-get-active/acs-guidelines-nutrition-physical-activity-cancer-prevention/guidelines.html. (Accesed 25 february 2020).Arroume, N., Froidevaux, R., Kapel, R., Cudennec, B., Ravallec, R., Flahaut, C., … Dhulster, P. (2016). Food peptides: purification, identification and role in the metabolism. Current Opinion in Food Science, 7, 101-107. doi:10.1016/j.cofs.2016.02.005Bosse (née Danz), R., Müller, A., Gibis, M., Weiss, A., Schmidt, H., & Weiss, J. (2017). Recent advances in cured raw ham manufacture. Critical Reviews in Food Science and Nutrition, 58(4), 610-630. doi:10.1080/10408398.2016.1208634Carrasco-Castilla, J., Hernández-Álvarez, A. J., Jiménez-Martínez, C., Gutiérrez-López, G. F., & Dávila-Ortiz, G. (2012). Use of Proteomics and Peptidomics Methods in Food Bioactive Peptide Science and Engineering. Food Engineering Reviews, 4(4), 224-243. doi:10.1007/s12393-012-9058-8Chenni, F. Z., Taché, S., Naud, N., Guéraud, F., Hobbs, D. A., Kunhle, G. G. C., … Corpet, D. E. (2013). Heme-Induced Biomarkers Associated with Red Meat Promotion of colon Cancer Are Not Modulated by the Intake of Nitrite. Nutrition and Cancer, 65(2), 227-233. doi:10.1080/01635581.2013.749291Dellafiora, L., Paolella, S., Dall’Asta, C., Dossena, A., Cozzini, P. & Galaverna, G. (2015). Hybrid in Silico/in Vitro Approach for the Identification of Angiotensin I Converting Enzyme Inhibitory Peptides from Parma Dry-Cured Ham. Journal of Agricultural & Food Chemistry, 63, 6366−6375. doi: 10.1021/acs.jafc.5b02303.EFSA (European Food Safety Authority) (2017). Re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. The EFSA Journal, 15, 4786. doi: 10.2903/j.efsa.2017.4786.Escudero, E., Aristoy, M.-C., Nishimura, H., Arihara, K., & Toldrá, F. (2012). Antihypertensive effect and antioxidant activity of peptide fractions extracted from Spanish dry-cured ham. Meat Science, 91(3), 306-311. doi:10.1016/j.meatsci.2012.02.008Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., Arihara, K., & Toldrá, F. (2013). Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. Journal of Proteomics, 78, 499-507. doi:10.1016/j.jprot.2012.10.019Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2013). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 138(2-3), 1282-1288. doi:10.1016/j.foodchem.2012.10.133Escudero, E., Mora, L., & Toldrá, F. (2014). Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chemistry, 161, 305-311. doi:10.1016/j.foodchem.2014.03.117Flores, M., Mora, L., Reig, M., & Toldrá, F. (2019). Risk assessment of chemical substances of safety concern generated in processed meats. Food Science and Human Wellness, 8(3), 244-251. doi:10.1016/j.fshw.2019.07.003Gallego, M., Aristoy, M.-C., & Toldrá, F. (2014). Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Science, 96(2), 757-761. doi:10.1016/j.meatsci.2013.09.014Gallego, M., Grootaert, C., Mora, L., Aristoy, M. C., Van Camp, J., & Toldrá, F. (2016). Transepithelial transport of dry-cured ham peptides with ACE inhibitory activity through a Caco-2 cell monolayer. Journal of Functional Foods, 21, 388-395. doi:10.1016/j.jff.2015.11.046Mora, L., Gallego, M., & Toldrá, F. (2018). New approaches based on comparative proteomics for the assessment of food quality. Current Opinion in Food Science, 22, 22-27. doi:10.1016/j.cofs.2018.01.005Gallego, M., Mora, L. & Toldrá, F. (2018b). Perspectives in the use of peptidomics in ham. Proteomics, 18, 1700422 (1-9). doi: 10.1002/pmic.201700422.Gallego, M., Mora, L., & Toldrá, F. (2018). Health relevance of antihypertensive peptides in foods. Current Opinion in Food Science, 19, 8-14. doi:10.1016/j.cofs.2017.12.004Gallego, M., Mora, L., & Toldrá, F. (2018). Characterisation of the antioxidant peptide AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chemistry, 258, 8-15. doi:10.1016/j.foodchem.2018.03.035Gallego, M., Mora, L., Reig, M., & Toldrá, F. (2018). Stability of the potent antioxidant peptide SNAAC identified from Spanish dry-cured ham. Food Research International, 105, 873-879. doi:10.1016/j.foodres.2017.12.006Gallego, M., Mora, L., & Toldrá, F. (2019). Potential cardioprotective peptides generated in Spanish dry-cured ham. Journal of Food Bioactives, 6. doi:10.31665/jfb.2019.6188Gierse, J., Thorarensen, A., Beltey, K., Bradshaw-Pierce, E., Cortes-Burgos, L., Hall, T., … Masferrer, J. (2010). A Novel Autotaxin Inhibitor Reduces Lysophosphatidic Acid Levels in Plasma and the Site of Inflammation. Journal of Pharmacology and Experimental Therapeutics, 334(1), 310-317. doi:10.1124/jpet.110.165845Gu, Y., Majumder, K., & Wu, J. (2011). QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Research International, 44(8), 2465-2474. doi:10.1016/j.foodres.2011.01.051IARC (International Agency for Research on Cancer, World Helath Organization) (2015). IARC Monographs on the evaluation of carcinogenic risks to humans, vol 114, 1–498.Kanner, J. (1994). Oxidative processes in meat and meat products: Quality implications. Meat Science, 36(1-2), 169-189. doi:10.1016/0309-1740(94)90040-xLacroix, I. M. E., & Li-Chan, E. C. Y. (2012). Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. Journal of Functional Foods, 4(2), 403-422. doi:10.1016/j.jff.2012.01.008Lafarga, T., O’Connor, P., & Hayes, M. (2014). Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides, 59, 53-62. doi:10.1016/j.peptides.2014.07.005Lammi, C., Aiello, G., Boschin, G., & Arnoldi, A. (2019). Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods, 55, 135-145. doi:10.1016/j.jff.2019.02.016Lan, V. T. T., Ito, K., Ohno, M., Motoyama, T., Ito, S., & Kawarasaki, Y. (2015). Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor. Food Chemistry, 175, 66-73. doi:10.1016/j.foodchem.2014.11.131Li, H., & Aluko, R. E. (2010). Identification and Inhibitory Properties of Multifunctional Peptides from Pea Protein Hydrolysate. Journal of Agricultural and Food Chemistry, 58(21), 11471-11476. doi:10.1021/jf102538gLiu, R., Xing, L., Fu, Q., Zhou, G., & Zhang, W. (2016). A Review of Antioxidant Peptides Derived from Meat Muscle and By-Products. Antioxidants, 5(3), 32. doi:10.3390/antiox5030032Márquez Contreras, E., Vázquez-Rico, I., Baldonedo-Suárez, A., Márquez-Rivero, S., Jiménez, J., Machancoses, F., … León-Justel, A. (2018). Effect of moderate and regular consumption of Cinco Jotas acorn-fed 100% Iberian ham on overall cardiovascular risk: A cohort study. Food Science & Nutrition, 6(8), 2553-2559. doi:10.1002/fsn3.869Martínez-Sánchez, S. M., Minguela, A., Prieto-Merino, D., Zafrilla-Rentero, M. P., Abellán-Alemán, J., & Montoro-García, S. (2017). The Effect of Regular Intake of Dry-Cured Ham Rich in Bioactive Peptides on Inflammation, Platelet and Monocyte Activation Markers in Humans. Nutrients, 9(4), 321. doi:10.3390/nu9040321Minkiewicz, P., Dziuba, J., & Michalska, J. (2011). Bovine Meat Proteins as Potential Precursors of Biologically Active Peptides - a Computational Study based on the BIOPEP Database. Food Science and Technology International, 17(1), 39-45. doi:10.1177/1082013210368461Montoro-García, S., Zafrilla-Rentero, M. P., Celdrán-de Haro, F. M., Piñero-de Armas, J. J., Toldrá, F., Tejada-Portero, L., & Abellán-Alemán, J. (2017). Effects of dry-cured ham rich in bioactive peptides on cardiovascular health: A randomized controlled trial. Journal of Functional Foods, 38, 160-167. doi:10.1016/j.jff.2017.09.012Mora, L., Escudero, E., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2014). Proteomic identification of antioxidant peptides from 400 to 2500Da generated in Spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Research International, 56, 68-76. doi:10.1016/j.foodres.2013.12.001Mora, L., Escudero, E., Arihara, K., & Toldrá, F. (2015). Antihypertensive effect of peptides naturally generated during Iberian dry-cured ham processing. Food Research International, 78, 71-78. doi:10.1016/j.foodres.2015.11.005Mora, L., Gallego, M., Escudero, E., Reig, M., Aristoy, M.-C., & Toldrá, F. (2015). Small peptides hydrolysis in dry-cured meats. International Journal of Food Microbiology, 212, 9-15. doi:10.1016/j.ijfoodmicro.2015.04.018Mora, L., Escudero, E., & Toldrá, F. (2016). Characterization of the peptide profile in Spanish Teruel, Italian Parma and Belgian dry-cured hams and its potential bioactivity. Food Research International, 89, 638-646. doi:10.1016/j.foodres.2016.09.016Mora, L., Gallego, M., Reig, M., & Toldrá, F. (2017). Challenges in the quantitation of naturally generated bioactive peptides in processed meats. Trends in Food Science & Technology, 69, 306-314. doi:10.1016/j.tifs.2017.04.011Mora, L., Sentandreu, M.A. & Toldrá, F. (2011) Intense degradation of myosin light chain isoforms after dry-cured ham processing. Journal of Agricultural & Food Chemistry, 2011, 59, 3884-3892. doi: 10.1021/jf104070q.Paolella, S., Falavigna, C., Faccini, A., Virgili, R., Sforza, S., Dall’Asta, C., … Galaverna, G. (2015). Effect of dry-cured ham maturation time on simulated gastrointestinal digestion: Characterization of the released peptide fraction. Food Research International, 67, 136-144. doi:10.1016/j.foodres.2014.10.026Pripp, A. H., Isaksson, T., Stepaniak, L., & S�rhaug, T. (2004). Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. European Food Research and Technology, 219(6), 579-583. doi:10.1007/s00217-004-1004-4Pugliese, C., Sirtori, F., Škrlep, M., Piasentier, E., Calamai, L., Franci, O., & Čandek-Potokar, M. (2015). The effect of ripening time on the chemical, textural, volatile and sensorial traits of Bicep femoris and Semimembranosus muscles of the Slovenian dry-cured ham Kraški pršut. Meat Science, 100, 58-68. doi:10.1016/j.meatsci.2014.09.012Rao, S., Sun, J., Liu, Y., Zeng, H., Su, Y., & Yang, Y. (2012). ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chemistry, 135(3), 1245-1252. doi:10.1016/j.foodchem.2012.05.059Toldrá, F., Rico, E., & Flores, J. (1993). Cathepsin B, D, H and L activities in the processing of dry-cured ham. Journal of the Science of Food and Agriculture, 62(2), 157-161. doi:10.1002/jsfa.2740620208Rodríguez-Nuñez, E., Aristoy, M.-C., & Toldrá, F. (1995). Peptide generation in the processing of dry-cured ham. Food Chemistry, 53(2), 187-190. doi:10.1016/0308-8146(95)90786-7Sánchez-Rivera, L., Martínez-Maqueda, D., Cruz-Huerta, E., Miralles, B., & Recio, I. (2014). Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Research International, 63, 170-181. doi:10.1016/j.foodres.2014.01.069Schurink, M., van Berkel, W. J. H., Wichers, H. J., & Boeriu, C. G. (2006). Identification of Lipoxygenase Inhibitory Peptides from β-Casein by Using SPOT Synthesis. ChemBioChem, 7(5), 743-747. doi:10.1002/cbic.200500461Segura-Campos, M., Chel-Guerrero, L., Betancur-Ancona, D., & Hernandez-Escalante, V. M. (2011). Bioavailability of Bioactive Peptides. Food Reviews International, 27(3), 213-226. doi:10.1080/87559129.2011.563395Sentandreu, M., & Toldrá, F. (2001). Dipeptidyl peptidase activities along the processing of Serrano dry-cured ham. European Food Research and Technology, 213(2), 83-87. doi:10.1007/s002170100355TOLDRÁ, F., CERVERÓ, M.-C., & PART, C. (1993). Porcine Aminopeptidase Activity as Affected by Curing Agents. Journal of Food Science, 58(4), 724-726. doi:10.1111/j.1365-2621.1993.tb09344.xToldrá, F., Reig, M., Aristoy, M.-C., & Mora, L. (2018). Generation of bioactive peptides during food processing. Food Chemistry, 267, 395-404. doi:10.1016/j.foodchem.2017.06.119Toldrá, F. (1998). Proteolysis and Lipolysis in Flavour Development of Dry-cured Meat Products. Meat Science, 49, S101-S110. doi:10.1016/s0309-1740(98)00077-1Toldrá, F., & Flores, M. (1998). The Role of Muscle Proteases and Lipases in Flavor Development During the Processing of Dry-Cured Ham. Critical Reviews in Food Science and Nutrition, 38(4), 331-352. doi:10.1080/10408699891274237Toldrá, F., Aristoy, M.-C., & Flores, M. (2000). Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Research International, 33(3-4), 181-185. doi:10.1016/s0963-9969(00)00032-6Udenigwe, C. C., & Aluko, R. E. (2011). Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. Journal of Food Science, 77(1), R11-R24. doi:10.1111/j.1750-3841.2011.02455.xVirgili, R., Saccani, G., Gabba, L., Tanzi, E., & Soresi Bordini, C. (2007). Changes of free amino acids and biogenic amines during extended ageing of Italian dry-cured ham. LWT - Food Science and Technology, 40(5), 871-878. doi:10.1016/j.lwt.2006.03.024Wang, B., & Li, B. (2017). Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model. Food Chemistry, 218, 1-8. doi:10.1016/j.foodchem.2016.08.106Wang, L., Li, X., Li, Y., Liu, W., Jia, X., Qiao, X., … Wang, S. (2018). Antioxidant and angiotensin I-converting enzyme inhibitory activities of Xuanwei ham before and after cooking and in vitro simulated gastrointestinal digestion. Royal Society Open Science, 5(7), 180276. doi:10.1098/rsos.180276Wilensky, R. L., Shi, Y., Mohler, E. R., Hamamdzic, D., Burgert, M. E., Li, J., … Macphee, C. H. (2008). Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nature Medicine, 14(10), 1059-1066. doi:10.1038/nm.1870Xing, L., Hu, Y., Hu, H., Ge, Q., Zhou, G., & Zhang, W. (2016). Purification and identification of antioxidative peptides from dry-cured Xuanwei ham. Food Chemistry, 194, 951-958. doi:10.1016/j.foodchem.2015.08.101Zhang, J., Zhen, Z., Zhang, W., Zeng, T., & Zhou, G. (2009). Effect of intensifying high-temperature ripening on proteolysis, lipolysis and flavor of Jinhua ham. Journal of the Science of Food and Agriculture, 89(5), 834-842. doi:10.1002/jsfa.3521Zhao, G. M., Zhou, G. H., Wang, Y. L., Xu, X. L., Huan, Y. J., & Wu, J. Q. (2005). Time-related changes in cathepsin B and L activities during processing of Jinhua ham as a function of pH, salt and temperature. Meat Science, 70(2), 381-388. doi:10.1016/j.meatsci.2005.02.004Zhou, C.-Y., Pan, D.-D., Bai, Y., Li, C.-B., Xu, X.-L., Zhou, G.-H., & Cao, J.-X. (2019). Evaluating endogenous protease of salting exudates during the salting process of Jinhua ham. LWT, 101, 76-82. doi:10.1016/j.lwt.2018.11.026Zhou, G. H., & Zhao, G. M. (2007). Biochemical changes during processing of traditional Jinhua ham. Meat Science, 77(1), 114-120. doi:10.1016/j.meatsci.2007.03.028Zhu, C.-Z., Zhang, W.-G., Kang, Z.-L., Zhou, G.-H., & Xu, X.-L. (2014). Stability of an antioxidant peptide extracted from Jinhua ham. Meat Science, 96(2), 783-789. doi:10.1016/j.meatsci.2013.09.004Zhu, C.-Z., Zhang, W.-G., Zhou, G.-H., Xu, X.-L., Kang, Z.-L., & Yin, Y. (2013). Isolation and Identification of Antioxidant Peptides from Jinhua Ham. Journal of Agricultural and Food Chemistry, 61(6), 1265-1271. doi:10.1021/jf3044764Zhu, C.-Z., Zhang, W.-G., Zhou, G.-H., & Xu, X.-L. (2015). Identification of antioxidant peptides of Jinhua ham generated in the products and through the simulated gastrointestinal digestion system. Journal of the Science of Food and Agriculture, 96(1), 99-108. doi:10.1002/jsfa.7065Zhu, C.-Z., Tian, W., Li, M.-Y., Liu, Y.-X., & Zhao, G.-M. (2017). Separation and identification of peptides from dry-cured Jinhua ham. International Journal of Food Properties, 20(sup3), S2980-S2989. doi:10.1080/10942912.2017.138995
    corecore