73 research outputs found

    Objective and Subjective Evaluation of the Use of Directional Sound Sources in Auralizations

    Get PDF
    Omni-directional sources are often used in room acoustic computer simulations, as opposed to directional sources, since measured directivity data are quite limited and difficult to obtain. The purpose of this study is to investigate the objective and subjective significance of adding more complex directivity to the sources used in computer simulations and auralizations. A simple hall was used as the modelled space in the software program ODEON. Three source positions on stage and three receiver audience positions were chosen. Impulse responses (IRs) were calculated for the nine source/receiver combinations, using (a) an omni-directional source, (b) a highly directional source beaming in a sixteenth-tant of a sphere, and (c) three realistic sources: piano, singing voice and violin. The directivity data for the three realistic sources, obtained from the Physikalisch-Technischen Bundesanstalt website, were available in octave bands from 1 kHz – 4 kHz for the piano and violin, and from 125 Hz – 4 kHz for the singing voice. The objective measures evaluated were Sound Pressure Level (SPL), Reverberation Time (T60) and Clarity Index (C80). In general, there is at least 5% difference in T60 data between the omni-directional source and the realistic directional ones. Differences in SPL and C80 are more irregular across frequency bands and appear to be more apparent for sources with higher directivity index. For select source/receiver combinations, the IRs resulting from each source directivity have been convolved with anechoic musical recordings of piano, singing and violin to produce auralizations. Subjective testing revealed a noticeable difference between the omni-directional and the sixteenth-tant sources, but not with the realistic sources

    Objective and Subjective Evaluation of the Use of Directional Sound Sources in Auralizations

    Get PDF
    Omni-directional sources are often used in room acoustic computer simulations, as opposed to directional sources, since measured directivity data are quite limited and difficult to obtain. The purpose of this study is to investigate the objective and subjective significance of adding more complex directivity to the sources used in computer simulations and auralizations. A simple hall was used as the modelled space in the software program ODEON. Three source positions on stage and three receiver audience positions were chosen. Impulse responses (IRs) were calculated for the nine source/receiver combinations, using (a) an omni-directional source, (b) a highly directional source beaming in a sixteenth-tant of a sphere, and (c) three realistic sources: piano, singing voice and violin. The directivity data for the three realistic sources, obtained from the Physikalisch-Technischen Bundesanstalt website, were available in octave bands from 1 kHz – 4 kHz for the piano and violin, and from 125 Hz – 4 kHz for the singing voice. The objective measures evaluated were Sound Pressure Level (SPL), Reverberation Time (T60) and Clarity Index (C80). In general, there is at least 5% difference in T60 data between the omni-directional source and the realistic directional ones. Differences in SPL and C80 are more irregular across frequency bands and appear to be more apparent for sources with higher directivity index. For select source/receiver combinations, the IRs resulting from each source directivity have been convolved with anechoic musical recordings of piano, singing and violin to produce auralizations. Subjective testing revealed a noticeable difference between the omni-directional and the sixteenth-tant sources, but not with the realistic sources

    Room acoustics computer modelling: Study of the effect of source directivity on auralizations

    Get PDF
    Auralizations are very useful in the design of performing arts spaces, where auralization is the process of rendering audible the sound field in a space, in such a way as to simulate the binaural listening experience at a given position in the modeled space. One of the fundamental modeling inputs to create auralizations is the source directivity. Standard methods involve inputting the measured source directivity, calculating the impulse response and convolving it with a single channel anechoic recording. An initial study was conducted using this method and the results showed significant differences in reverberation time and clarity index when using a directional versus omni-directional source. Further research was conducted focusing on an alternative method of modeling source directivity that involves multi-channel anechoic recordings to create auralizations. Subjective tests were conducted comparing auralizations made with one, four and thirteen channels, with three different instrument types and subjects rated differences in realism. An analysis of variance (ANOVA) was carried out to determine the effect of the number of channels and instrument on realism. The primary result from this study was that subjects rated the auralizations made with an increasing number of channels as sounding more realistic, indicating that when more accurate source directivity information is used a more realistic auralization is possible

    Swimming in circles: Motion of bacteria near solid boundaries

    Get PDF
    Near a solid boundary, E. coli swims in clockwise circular motion. We provide a hydrodynamic model for this behavior. We show that circular trajectories are natural consequences of force-free and torque-free swimming, and the hydrodynamic interactions with the boundary, which also leads to a hydrodynamic trapping of the cells close to the surface. We compare the results of the model with experimental data and obtain reasonable agreement. In particular, we show that the radius of curvature of the trajectory increases with the length of the bacterium body.Comment: Also available at http://people.deas.harvard.edu/~lauga

    Enhanced diffusion due to active swimmers at a solid surface

    Full text link
    We consider two systems of active swimmers moving close to a solid surface, one being a living population of wild-type \textit{E. coli} and the other being an assembly of self-propelled Au-Pt rods. In both situations, we have identified two different types of motion at the surface and evaluated the fraction of the population that displayed ballistic trajectories (active swimmers) with respect to those showing random-like behavior. We studied the effect of this complex swimming activity on the diffusivity of passive tracers also present at the surface. We found that the tracer diffusivity is enhanced with respect to standard Brownian motion and increases linearly with the activity of the fluid, defined as the product of the fraction of active swimmers and their mean velocity. This result can be understood in terms of series of elementary encounters between the active swimmers and the tracers.Comment: 4 pages, 2 figures in color, Physical Review Letters (in production
    • …
    corecore