39 research outputs found

    Precise Characterization and Multiobjective Optimization of Low Noise Amplifiers

    Get PDF
    Although practically all function blocks of the satellite navigation receivers are realized using the CMOS digital integrated circuits, it is appropriate to create a separate low noise antenna preamplifier based on a low noise pHEMT. Such an RF front end can be strongly optimized to attain a suitable tradeoff between the noise figure and transducer power gain. Further, as all the four principal navigation systems (GPS, GLONASS, Galileo, and COMPASS) work in similar frequency bands (roughly from 1.1 to 1.7 GHz), it is reasonable to create the low noise preamplifier for all of them. In the paper, a sophisticated method of the amplifier design is suggested based on multiobjective optimization. A substantial improvement of a standard optimization method is also outlined to satisfy a uniform coverage of Pareto front. Moreover, for enhancing efficiency of many times repeated solutions of large linear systems during the optimization, a new modification of the Markowitz criterion is suggested compatible with fast modes of the LU factorization. Extraordinary attention was also given to the accuracy of modeling. First, an extraction of pHEMT model parameters was performed including its noise part, and several models were compared. The extraction was carried out by an original identification procedure based on a combination of metaheuristic and direct methods. Second, the equations of the passive elements (including transmission lines and T-splitters) were carefully defined using frequency dispersion of their parameters as Q, ESR, etc. Third, an optimal selection of the operating point and essential passive elements was performed using the improved optimization method. Finally, the s-parameters and noise figure of the amplifier were measured, and stability and third-order intermodulation products were also checked

    Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors

    Get PDF
    Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently

    Flow Visualization of an Impinging Jet Subjected to Bimodal Forcing

    No full text

    Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    No full text
    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic efficiency and growth of the green microalga Chlamydomonas reinhardtii were measured using LED light to simulate light/dark cycles ranging from 5 to 100¿Hz at a light-dark ratio of 0.1 and a flash intensity of 1000¿µmol¿m-2¿s-1. Light flashing at 100¿Hz yielded the same photosynthetic efficiency and specific growth rate as cultivation under continuous illumination with the same time-averaged light intensity (i.e., 100¿µmol¿m-2¿s-1). The efficiency and growth rate decreased with decreasing flash frequency. Even at 5¿Hz flashing, the rate of linear electron transport during the flash was still 2.5 times higher than during maximal growth under continuous light, suggesting storage of reducing equivalents during the flash which are available during the dark period. In this way the dark reaction of photosynthesis can continue during the dark time of a light/dark cycle. Understanding photosynthetic growth in dynamic light regimes is crucial for model development to predict microalgal photobioreactor productivities. Biotechnol. Bioeng. 2011;108: 2905–2913. © 2011 Wiley Periodicals, In

    Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light

    No full text
    As a result of mixing and light attenuation in a photobioreactor (PBR), microalgae experience light/dark (L/D) cycles that can enhance PBR efficiency. One parameter which characterizes L/D cycles is the duty cycle; it determines the time fraction algae spend in the light. The objective of this study was to determine the influence of different duty cycles on oxygen yield on absorbed light energy and photosynthetic oxygen evolution. Net oxygen evolution of Chlamydomonas reinhardtii was measured for four duty cycles (0.05, 0.1, 0.2, and 0.5) in a biological oxygen monitor (BOM). Oversaturating light flashes were applied in a square-wave fashion with four flash frequencies (5, 10, 50, and 100 Hz). Algae were precultivated in a turbidostat and acclimated to a low photon flux density (PFD). A photosynthesis-irradiance (PI) curve was measured under continuous illumination and used to calculate the net oxygen yield, which was maximal between a PFD of 100 and 200 µmol m(-2)¿s(-1). Net oxygen yield under flashing light was duty cycle-dependent: the highest yield was observed at a duty cycle of 0.1 (i.e., time-averaged PFD of 115 µmol m(-2)¿s(-1)). At lower duty cycles, maintenance respiration reduced net oxygen yield. At higher duty cycles, photon absorption rate exceeded the maximal photon utilization rate, and, as a result, surplus light energy was dissipated which led to a reduction in net oxygen yield. This behavior was identical with the observation under continuous light. Based on these data, the optimal balance between oxygen yield and production rate can be determined to maximize PBR productivity

    Influence of bubble approach velocity on coalescence in α-terpineol and n-octanol solutions

    No full text
    This work presents results of an experimental study of the influence of the approach velocity on the coalescence of bubbles in aqueous solutions of n-octanol and α-terpineol. Experiments were performed in a coalescence cell allowing synchronized growth of a pair of bubbles in a liquid. High speed camera imaging was used to characterize the growth of bubbles and their interaction in aqueous solution of different concentrations of surfactants. The coalescence efficiency and contact time till coalescence were determined as a function of the approach velocity between bubbles and the concentration of surfactant. It was found that, for both surfactants, when the approach velocity between bubbles was higher than ~1 mm/s, the coalescence efficiency was independent of the approach velocity and that the contact time was independent of the concentration of surfactant. Below ~1 mm/s, both the coalescence efficiency and the contact time were the function of surfactant concentration. For the higher velocities, the suppression of coalescence occurred at concentrations similar to the concentration of immobilization of the surface of free rising bubbles
    corecore