7 research outputs found

    Suspended sediment load prediction using artificial intelligence techniques: comparison between four state-of-the-art artificial neural network techniques

    Full text link
    Accurate prediction of suspended sediment (SS) concentration is a difficult task for water resource projects. In recent years, methodologies such as artificial intelligence (AI) algorithms have been applied for sediment load estimation and these models have provided efficient results. The present study investigates the abilities of four distinct AI approaches for estimating monthly SS load in Roodak station on Jajrood River, one of the longest waterways in the north of Iran, using the combinations of the present and antecedent monthly river flow data. This study aims to compare the predictive ability of artificial neural network (ANN), adaptive neuro-fuzzy inference systems (ANFIS), group method of data handling (GMDH), and least square support vector machines (LS-SVM) applied to predict the SS load. To develop the models, the monthly average river flow and the SS data for 50 years were obtained from Tehran regional water authority. Data were separated into three subsets (training, validation, and testing) and the SS concentration was predicted where the reliability of utilized approaches was assessed by statistical criterion including the correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE). A comparison of the developed models revealed that the use of antecedent average river flow is able to enhance the prediction precision of suspended sediment concentration. The results indicate that the LS-SVM model generated superior results than the other models in terms of the mean error criteria, showing the ability of the model to reasonably predict the observed SS load values

    Fuz Mutant Mice Reveal Shared Mechanisms between Ciliopathies and FGF-Related Syndromes

    Get PDF
    SummaryCiliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies
    corecore