102 research outputs found
Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula
<p>Abstract</p> <p>Background</p> <p>Parasitic angiosperm <it>Orobanche crenata </it>infection represents a major constraint for the cultivation of legumes worldwide. The level of protection achieved to date is either incomplete or ephemeral. Hence, an efficient control of the parasite requires a better understanding of its interaction and associated resistance mechanisms at molecular levels.</p> <p>Results</p> <p>In order to study the plant response to this parasitic plant and the molecular basis of the resistance we have used a proteomic approach. The root proteome of two accessions of the model legume <it>Medicago truncatula </it>displaying differences in their resistance phenotype, in control as well as in inoculated plants, over two time points (21 and 25 days post infection), has been compared. We report quantitative as well as qualitative differences in the 2-DE maps between early- (SA 27774) and late-resistant (SA 4087) genotypes after Coomassie and silver-staining: 69 differential spots were observed between non-inoculated genotypes, and 42 and 25 spots for SA 4087 and SA 27774 non-inoculated and inoculated plants, respectively. In all, 49 differential spots were identified by peptide mass fingerprinting (PMF) following MALDI-TOF/TOF mass spectrometry. Many of the proteins showing significant differences between genotypes and after parasitic infection belong to the functional category of defense and stress-related proteins. A number of spots correspond to proteins with the same function, and might represent members of a multigenic family or post-transcriptional forms of the same protein.</p> <p>Conclusion</p> <p>The results obtained suggest the existence of a generic defense mechanism operating during the early stages of infection and differing in both genotypes. The faster response to the infection observed in the SA 27774 genotype might be due to the action of proteins targeted against key elements needed for the parasite's successful infection, such as protease inhibitors. Our data are discussed and compared with those previously obtained with pea <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> and transcriptomic analysis of other plant-pathogen and plant-parasitic plant systems.</p
Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant
Coherent elastic neutrino-nucleus scattering (CENS) offers a unique way
to study neutrino properties and to search for new physics beyond the Standard
Model. Nuclear reactors are promising sources to explore this process at low
energies since they deliver large fluxes of (anti-)neutrinos with typical
energies of a few MeV. In this paper, a new-generation experiment to study
CENS is described. The NUCLEUS experiment will use cryogenic detectors
which feature an unprecedentedly low energy threshold and a time response fast
enough to be operated in above-ground conditions. Both sensitivity to
low-energy nuclear recoils and a high event rate tolerance are stringent
requirements to measure CENS of reactor antineutrinos. A new experimental
site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in
France is described. The VNS is located between the two 4.25 GW
reactor cores and matches the requirements of NUCLEUS. First results of on-site
measurements of neutron and muon backgrounds, the expected dominant background
contributions, are given. In this paper a preliminary experimental setup with
dedicated active and passive background reduction techniques is presented.
Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence
with an active muon-veto at shallow overburden is studied. The paper concludes
with a sensitivity study pointing out the promising physics potential of
NUCLEUS at the Chooz nuclear power plant
Recent advances on dendrogeomorphological research applied to flood hazard analysis in Spain.
Estudios dendroecológicos para el análisis de regímentes torrenciales y avenida
Genome-wide association study of common resistance to rust species in tetraploid wheat
Rusts of the genus Puccinia are wheat pathogens. Stem (black; Sr), leaf (brown; Lr), and stripe (yellow; Yr) rust, caused by Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and Puccinia striiformis f. sp. tritici (Pst), can occur singularly or in mixed infections and pose a threat to wheat production globally in terms of the wide dispersal of their urediniospores. The development of durable resistant cultivars is the most sustainable method for controlling them. Many resistance genes have been identified, characterized, genetically mapped, and cloned; several quantitative trait loci (QTLs) for resistance have also been described. However, few studies have considered resistance to all three rust pathogens in a given germplasm. A genome-wide association study (GWAS) was carried out to identify loci associated with resistance to the three rusts in a collection of 230 inbred lines of tetraploid wheat (128 of which were Triticum turgidum ssp. durum) genotyped with SNPs. The wheat panel was phenotyped in the field and subjected to growth chamber experiments across different countries (USA, Mexico, Morocco, Italy, and Spain); then, a mixed linear model (MLM) GWAS was performed. In total, 9, 34, and 5 QTLs were identified in the A and B genomes for resistance to Pgt, Pt, and Pst, respectively, at both the seedling and adult plant stages. Only one QTL on chromosome 4A was found to be effective against all three rusts at the seedling stage. Six QTLs conferring resistance to two rust species at the adult plant stage were mapped: three on chromosome 1B and one each on 5B, 7A, and 7B. Fifteen QTLs conferring seedling resistance to two rusts were mapped: five on chromosome 2B, three on 7B, two each on 5B and 6A, and one each on 1B, 2A, and 7A. Most of the QTLs identified were specific for a single rust species or race of a species. Candidate genes were identified within the confidence intervals of a QTL conferring resistance against at least two rust species by using the annotations of the durum (cv. 'Svevo') and wild emmer wheat ('Zavitan') reference genomes. The 22 identified loci conferring resistance to two or three rust species may be useful for breeding new and potentially durable resistant wheat cultivars
Flood Hazard Analysis in the ”Caldera de Taburiente” National Park (La Palma, Canary Islands, Spain) using Dendrogeomorphology
Aplicación de técnicas dendroecológicas para el estudio de avenidas torrenciales
Anthracological evidence suggests naturalness of Pinus pinaster in inland southwestern Iberia
The study of well-preserved archaeological charcoals in the pre-Roman Iron Age settlement of Castillejos II (Badajoz, Spain) is used to reconstruct environmental conditions and land-use practices in vegetation landscapes in the southwest of the Iberian Peninsula before the arrival of Roman civilization. The results support that, while evergreen Quercus forests dominated during the Holocene, Pinus pinaster existed as a natural element of southwestern Iberian Peninsula vegetation. Although its presence could be linked to anthropogenic disturbance or fire history, it is suggested that P. pinaster populations survived during the Holocene in the region, mixed with oaks or in monospecific stands in mountain enclaves. This hypothesis contrasts with previous assumptions that P. pinaster was not autochthonous in the area
A genome-wide identification and comparative analysis of the lentil MLO genes
Revista electrónica on linePowdery mildew is a widespread fungal plant disease that can cause significant losses in
many crops. Some MLO genes (Mildew resistance locus O) have proved to confer a durable
resistance to powdery mildew in several species. Resistance granted by the MLO gene family
members has prompted an increasing interest in characterizing these genes and implementing
their use in plant breeding. Lentil (Lens culinaris Medik.) is a widely grown food
legume almost exclusively consumed as dry seed with an average world production of 4.5
million tons. Powdery mildew causes severe losses on certain lentil cultivars under particular
environmental conditions. Data mining of the lentil CDC Redberry draft genome allowed to
identify up to 15 gene sequences with homology to known MLO genes, designated as
LcMLOs. Further characterization of these gene sequences and their deduced protein
sequences demonstrated conformity with key MLO protein characteristics such as the presence
of transmembrane and calmodulin binding domains, as well as that of other conserved
motifs. Phylogenetic and other comparative analyses revealed that LcMLO1 and LcMLO3
are the most likely gene orthologs related to powdery mildew response in other species,
sharing a high similarity with other known resistance genes of dicot species, such as pea
PsMLO1 and Medicago truncatula MtMLO1 and MtMLO3. Sets of primers were designed
as tools to PCR amplify the genomic sequences of LcMLO1 and LcMLO3, also to screen
lentil germplasm in search of resistance mutants. Primers were used to obtain the complete
sequences of these two genes in all of the six wild lentil relatives. Respective to each gene,
all Lens sequences shared a high similarity. Likewise, we used these primers to screen a
working collection of 58 cultivated and 23 wild lentil accessions in search of length polymorphisms
present in these two genes. All these data widen the insights on this gene family and
can be useful for breeding programs in lentil and close related species.S
Genome-wide association study of common resistance to rust species in tetraploid wheat
Rusts of the genus Puccinia are wheat pathogens. Stem (black; Sr), leaf (brown; Lr), and stripe (yellow; Yr) rust, caused by Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and Puccinia striiformis f. sp. tritici (Pst), can occur singularly or in mixed infections and pose a threat to wheat production globally in terms of the wide dispersal of their urediniospores. The development of durable resistant cultivars is the most sustainable method for controlling them. Many resistance genes have been identified, characterized, genetically mapped, and cloned; several quantitative trait loci (QTLs) for resistance have also been described. However, few studies have considered resistance to all three rust pathogens in a given germplasm. A genome-wide association study (GWAS) was carried out to identify loci associated with resistance to the three rusts in a collection of 230 inbred lines of tetraploid wheat (128 of which were Triticum turgidum ssp. durum) genotyped with SNPs. The wheat panel was phenotyped in the field and subjected to growth chamber experiments across different countries (USA, Mexico, Morocco, Italy, and Spain); then, a mixed linear model (MLM) GWAS was performed. In total, 9, 34, and 5 QTLs were identified in the A and B genomes for resistance to Pgt, Pt, and Pst, respectively, at both the seedling and adult plant stages. Only one QTL on chromosome 4A was found to be effective against all three rusts at the seedling stage. Six QTLs conferring resistance to two rust species at the adult plant stage were mapped: three on chromosome 1B and one each on 5B, 7A, and 7B. Fifteen QTLs conferring seedling resistance to two rusts were mapped: five on chromosome 2B, three on 7B, two each on 5B and 6A, and one each on 1B, 2A, and 7A. Most of the QTLs identified were specific for a single rust species or race of a species. Candidate genes were identified within the confidence intervals of a QTL conferring resistance against at least two rust species by using the annotations of the durum (cv. ‘Svevo’) and wild emmer wheat (‘Zavitan’) reference genomes. The 22 identified loci conferring resistance to two or three rust species may be useful for breeding new and potentially durable resistant wheat cultivars
Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects
The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability
- …