294 research outputs found

    Unofficial Detours : Guidelines for LPA\u27s

    Get PDF

    Mechanical design and friction modelling of a cable-driven upper-limb exoskeleton

    Get PDF
    This paper presents a lightweight and low-inertia cable-driven upper-limb exoskeleton powerful enough to meet the requirements for activities of daily living. It presents the mechanical design, kinematic structure,the underlying actuation system, sensors, other electronic components as well as the controller of the exoskeleton. The extensive effect of friction on cable-driven designs, such as the one presented in this paper, requires proper mathematical modelling for controller design. Thus, we propose a current actuator model that describes the relationship between the motor current, velocity, and external load. The model relies on an underlying Stribeck+Coulomb friction representation and an additional parameter that modifies its Coulomb friction representation with an offset to represent adhesion between a cable and sheath. The model has been validated based on experimental data collected with the exoskeleton. The results show that the proposed model better captures the non-linear behaviour of the exoskeleton’s actuation system, increasing overall descriptive performance by 15%. However, adding the adhesion offset to extend the relation of static friction, does not improve the model

    Using humanoid robots to study human behavior

    Get PDF
    Our understanding of human behavior advances as our humanoid robotics work progresses-and vice versa. This team's work focuses on trajectory formation and planning, learning from demonstration, oculomotor control and interactive behaviors. They are programming robotic behavior based on how we humans “program” behavior in-or train-each other

    Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials

    Get PDF
    Abstract: Background: Copper oxide nanomaterials (CuO NMs) are exploited in many products including inks, cosmetics, textiles, wood preservatives and food contact materials. Their incorporation into these products may enhance oral exposure in consumer, environmental and occupational settings. Undifferentiated and differentiated monocultures of Caco-2 cells are commonly used to assess NM toxicity to the intestine in vitro. However, the integration of other cell types into Caco-2 in vitro models increases their physiological relevance. Therefore, the aim of this study is to evaluate the toxicity of CuO NMs and copper sulphate ( CuSO4) to intestinal microfold (M) cell (Caco-2/Raji B) and mucus secreting (Caco-2/HT29-MTX) co-culture in vitro models via assessment of their impact on barrier integrity, viability and interleukin (IL)-8 secretion. The translocation of CuO NMs and CuSO4 across the intestinal barrier was also investigated in vitro. Results: CuO NMs and CuSO4 impaired the function of the intestinal barrier in the co-culture models [as indicated by a reduction in transepithelial electrical resistance (TEER) and Zonular occludens (ZO-1) staining intensity]. Cu translocation was observed in both models but was greatest in the Caco-2/Raji B co-culture. CuO NMs and CuSO4 stimulated an increase in IL-8 secretion, which was greatest in the Caco-2/HT29-MTX co-culture model. CuO NMs and CuSO4 did not stimulate a loss of cell viability, when assessed using light microscopy, nuclei counts and scanning electron microscopy. CuO NMs demonstrated a relatively similar level of toxicity to CuO4 in both Caco-2/Raji B and Caco-2/ HT29-MTX co- culture models. Conclusions: The Caco-2/Raji B co-culture model was more sensitive to CuO NM and CuSO4 toxicity than the Caco-2/HT29-MTX co-culture model. However, both co-culture models were less sensitive to CuO NM and CuSO4 toxicity than simple monocultures of undifferentiated and differentiated Caco-2 cells, which are more routinely used to investigate NM toxicity to the intestine. Obtained data can therefore feed into the design of future studies which assess the toxicity of substances (e.g. NMs) and pathogens to the intestine (e.g. by informing model and endpoint selection). However, more testing with a wider panel of NMs would be beneficial in order to help select which in vitro models and endpoints to prioritise when screening the safety of ingested NMs. Comparisons with in vivo findings will also be essential to identify the most suitable in vitro model to screen the safety of ingested NMs

    Investigation and evaluation of a 3D-printed optical modified cultivation vessel for improved scattered light measurement of biotechnologically relevant organisms

    Get PDF
    In the field of bioprocess development miniaturization, parallelization and flexibility play a key role reducing costs and time. To precisely meet these requirements, additive manufacturing (3D-printing) is an ideal technology. 3D-printing enables rapid prototyping and cost-effective fabrication of individually designed devices with complex geometries on demand. For successful bioprocess development, monitoring of process-relevant parameters, such as pH, dissolved oxygen (DO), and biomass, is crucial. Online monitoring is preferred as offline sampling is time-consuming and leads to loss of information. In this study, 3D-printed cultivation vessels with optical prisms are evaluated for the use in upstream processes of different industrially relevant microorganisms and cell lines. It was shown, that the 3D-printed optically modified well (OMW) is of benefit for a wide range of biotechnologically relevant microorganisms and even for mammalian suspension cells. Evaluation tests with Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, and Chinese hamster ovary (CHO) cells were performed, providing highly reproducible results. Growth behavior of OMW cultures was comparable to behavior of shake flask (SF) cultivations and the signal to noise ratio in online biomass measurement was shown to be reduced up to 95.8% by using the OMW. Especially the cultivation phases with low turbidity respective optical densities below 1.0 rel.AU could be monitored accurately for the first time. Furthermore, it was demonstrated that the 3D-printed optics are transferable to different well geometries and sizes, enabling efficient biomass monitoring for individual requirements with tailor-made 3D-printed cultivation vessels in small scale

    Characterization of Erbium-Doped Nanoparticles in Transparent Glass Ceramic Optical Fibres

    Get PDF
    We report on using nanometric mass spectroscopy and molecular dynamics modelling to characterize the composition and structure of self-grown erbium-doped nanoparticles in transparent glass ceramic optical fibres fabricated by modified chemical vapour deposition without post-ceramming

    Presentation and Preliminary Results of DROÏD Project: Development of a Distributed Optical Fibre Dosimeter

    Get PDF
    International audienceABSTRACT DROÏD project is intended to develop a distributed optical fibre dosimeter based on Radiation-Induced Attenua-tion (RIA). The RIA will be measured by a high resolution Optical Time Domain Reflectometry (OTDR) technique that allows to locate the irradiated fibre section. The first part of the project focuses on designing a high radiation sensitive fibre. As a preliminary work, the attenu-ation of several fibres with various compositions has been recorded in situ during and after irradiation. The experimental setup and RIA values are presented and discussed. Several dopants and their combinations have been identified as a good starting point to design a highly radiation sensitive fibre

    Elemental Composition Analysis of Soil Samples from Bayelsa State in the Niger Delta Region of Nigeria

    Get PDF
    This study analysis the elemental composition and concentration of elements in the soils of the study area to ascertain degree of elemental enhancement in the soil resulting from anthropogenic activities with possible soil contamination, human health and environmental detriment. The study area was divided into eight grids and two soil samples per grid from over burden to a depth of 900mm was collected randomly in each grid. The samples were prepared using standard methods and analyzed with a linear accelerator. The number of detectable elements and their quantitative information was extracted from the elemental spectral signatures. . The result showed a high concentration value in some elements in the soil samples above values of elemental concentrations in soils from other reported studied region. In addition, Aluminium, Strontium, Barium, Gallium etc also showed an extremely high value in their concentration that exceeds the world wide mean range upper limit values in crustal soil study published. The study indicates some degree of potential contamination and therefore necessitate a regular periodic monitoring study to reduce potential health detriment to humans and the environment to as low as reasonably possible

    Birefringence analysis of multilayer leaky cladding optical fibre

    Get PDF
    We analyse a multilayer leaky cladding (MLC) fibre using the finite element method and study the effect of the MLC on the bending loss and birefringence of two types of structures: (i) a circular core large-mode-area structure and (ii) an elliptical-small-core structure. In a large-mode-area structure, we verify that the multilayer leaky cladding strongly discriminates against higher order modes to achieve single-mode operation, the fibre shows negligible birefringence, and the bending loss of the fibre is low for bending radii larger than 10 cm. In the elliptical-small-core structure we show that the MLC reduces the birefringence of the fibre. This prevents the structure from becoming birefringent in case of any departures from circular geometry. The study should be useful in the designs of MLC fibres for various applications including high power amplifiers, gain flattening of fibre amplifiers and dispersion compensation.Comment: 18 page
    corecore