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1
 Abbreviations 

ANOVA, Analysis of variance; DCFH-DA, 2',7'-Dichlorofluorescin diacetate; EDTA, 

Ethylenediaminetetraacetic acid; ELISA, Enzyme-Linked Immuno-Sorbent Assay; FBS, Fetal bovine serum; 

IL-8, Interleukin-8; MMT, Montmorillonite; PBS, Phosphate buffered saline; ROS, Reactive oxygen species; 

SiO2, Silicon dioxide; TEER, Transepithelial electrical potential. 
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Abstract 

Nanomaterials (NMs) including the nanoclay montmorillonite (MMT) and silicon oxide 

(SiO2) are exploited in diverse health and consumer products that may lead to their ingestion. 

There is a lack of studies on the toxicity of SiO2 NMs and MMT using intestinal in vitro 

models. Here, we investigate the toxicity of SiO2 NMs and MMT nanoclays to the intestine 

using four intestinal in vitro models via assessment of cytotoxicity, transepithelial electrical 

resistance (TEER), cell morphology reactive oxygen species (ROS) and interleukin (IL)-8 

production. SiO2 NMs and MMT were non-toxic when cell viability, TEER and cell 

morphology were assessed as indicators of toxicity, across all models. SiO2 NMs and MMT 

did not stimulate production of ROS in acellular and cellular conditions. IL-8 was stimulated 

by only SiO2 NMs and the level produced was low, which may not be biologically 

significant. Using a battery of tests, it was identified that SiO2 NMs and MMT are relatively 

non-toxic. However, comparison of the results with in vivo data would identify which in vitro 

models provide a good prediction of NM toxicity to inform testing strategies for assessment 

of the toxicity of ingested NMs and to ensure the safe use of food relevant NMs in future. 

   

Keywords: Montmorillonite, Silicon dioxide, ingestion, interleukin -8, TEER. 
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1. Introduction  

The gastrointestinal (GI) tract is a complex barrier-exchange system and a boundary between 

the external environment and the systemic environment of the human body. The  GI tract is 

formed from a range of cell types, with different structures and functions including; 

enterocytic (epithelial) cells, endocrine cells, Paneth cells, goblet cells, and microfold cells 

(Madara, 2011). The surface area of the intestine is increased by the presence of villi and 

microvilli (Helander and Fändriks, 2014). The microbiome is a community of bacteria that 

resides in the GI tract and contributes to several GI tract functions (Jandhyala et al., 2015),  

The major cell type of the GI tract is enterocytes. Enterocytes are tightly sealed by tight 

junctions, which prevent the translocation of substances from the intestinal lumen to the 

systemic environment (Landy et al., 2016). A compromise in tight junction function leads to 

inflammation and enhanced penetration of toxic compounds and pathogens to the systemic 

environment (Ma et al., 2012; Schulzke et al., 2009). In vitro, the function of tight junctions 

is monitored by performing permeability studies (using insulin or mannitol) and via 

measurement of transepithelial electrical resistance (TEER). TEER measures the ability of 

the cell monolayer to separate ionic charge across the epithelia, and intestinal monolayers are 

termed leaky or tight based on their electrical resistance (Ma et al., 2012). However, to my 

knowledge, there is published paper which has studied the toxicity of silicon dioxide (SiO2) 

NMs and montmorillonite (MMT) in the intestine in vitro using differentiated Caco-2 cells 

and intestinal co-culture models via TEER measurements. 

Microfold cells represent ~10 % of the follicle-associated epithelium and are responsible for 

luminal antigen sampling (Gamboa and Leong, 2013; Jepson and Ann Clark, 1998; Jepson 

and Clark, 2001; Lefebvre et al., 2015). M cells lack microvilli in the apical side and are 

responsible for particles and pathogens transport across the intestinal epithelium to the 

underlying immune cells (Brayden et al., 2005; Corr et al., 2008; des Rieux et al., 2007; 
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Jepson and Clark, 2001; Shakweh et al., 2004). M cells function as antigen sampling cells 

and are a site for microbial and particulate matter trafficking (Powell et al., 2007).  

The intestinal epithelium lined with mucus, is secreted by the goblet cells and functions as a 

first line of defence against invading pathogens, essential for digestion and absorption of food 

including egestion of undigested food, microorganisms and its by-products (Kim and Ho, 

2010; Pelaseyed et al., 2014). Mucus prevents infection and activation of inflammation, 

clearing and separating toxic materials such as pathogens from the epithelial cells to protect 

the intestinal epithelium (Hansson, 2012).  

The human Caco-2 cell line is widely accepted for in vitro toxicity studies and was first 

isolated from a human colon adenocarcinoma (Fogh et al., 1977). Caco-2 cells spontaneously 

differentiate to a mature human intestinal epithelium after culturing for 15-21 days (Natoli et 

al., 2011; Sambuy et al., 2005; Sambuy et al., 2001). Undifferentiated Caco-2 cells lack some 

biochemical and morphological characteristics of human enterocytes, but they represent 

proliferating cells (Tarantini et al., 2015b), hence they depict more closely the intestinal crypt 

epithelial cells. Differentiated Caco-2 cells share many morphological and functional 

characteristics of enterocytes in vivo, such as the presence of microvilli, functional tight 

junctions joining the cells in the monolayer, expression of characteristic hydrolases such as 

sucrose-isomaltase, lactase, aminopeptidase N and dipeptidyl peptidase IV of the absorptive 

enterocytes of small intestine (Ferruzza et al., 2012; Sambuy et al., 2001). Differentiated 

Caco-2 cells lack a mucus layer and microfold (M) cells, but Caco-2 cells can be used to 

develop co-culture models, which incorporate these cells. Co-culturing of differentiated 

Caco-2 and HT29-MTX cells in a transwell plate leads to the development of  a mucus 

secreting in vitro intestinal model (Sambuy et al., 2001). This model has been used to study 

the toxicity and intestinal transport of substances across the intestinal epithelium 

(Georgantzopoulou et al., 2016; Kavanaugh et al., 2013; Martínez-Maqueda et al., 2015; 
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Sigurdsson et al., 2013; Yuan et al., 2013). Caco-2/HT29-MTX co-culture has not been used 

to investigate the toxicity of SiO2 NMs and MMT. 

There are currently three different in vitro models of M cells and all involve seeding of Caco-

2 cells into the apical (AP) compartment of a transwell plate, and the Raji B cell line or 

murine lymphocytes into the basolateral (BL) compartment. The first model is a co-culture of 

murine lymphocytes from the Peyer’s patches and Caco-2 cells where Caco-2 cells are 

seeded into the AP compartment of the transwell plates and cultured for 14 days and murine 

lymphocytes from the Peyer’s patches are seeded in the BL compartment and grown for 4 to 

6 days (Kernéis et al., 1997). The second model is a co-culture of human Burkitt’s Raji B 

cells and Caco-2 cells, where Raji B cells are seeded in the BL compartment of the transwell 

plate after 14 days and are grown for a further 4-6 days (des Rieux et al., 2005). The third 

model involves a co-culture of Caco-2 cells and Raji B cells but the insert is inverted 3-5 

days post seeding of  Caco-2 cells and Raji B cells seeded after 14 days and are cultured for 

4-6 days then the inserts are placed back at its original orientation (des Rieux et al., 2007).  

The toxicity of SiO2 NMs and MMT has not been studied using any of these three types of in 

vitro M cell models.  

The most wildly synthesised NM globally is SiO2 (Decan et al., 2016). SiO2 NMs are used by 

various sectors in diverse products. For example, SiO2 NMs are used in biomedical 

applications for drug delivery, bio imaging and cancer therapy (Kim et al., 2015; Pasqua et 

al., 2009; Sakai-Kato et al., 2014; Schübbe et al., 2012). In addition, SiO2 NMs are used in 

biotechnology for DNA transfection and in a range of consumer products such as cosmetics, 

drugs, paints, and food as a food additive (anti-caking agent) (Decan et al., 2016; McCracken 

et al., 2013), and in agriculture for gene delivery in plants (Decan et al., 2016). SiO2 NMs are 

also used to maintain the flow of powder in a range of products (e.g. vending machine 

powders, milk and cream powder substitutes, cheese and sugar) (Smolkova et al., 2015). The 
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use of silica NMs in this range of products may lead to human exposure via ingestion, 

inhalation, dermal, adsorption and injection. A series of toxicology studies have been 

conducted with different type of silica. In vitro (using cell lines) have investigated the 

toxicity of SiO2 NMs to the lungs, intestine and skin and the available results are often 

contradictory. For example, cytotoxicity, ROS production and modified gene expression 

(CAT, GSTA4, TNF-α, CYP1A, POR, SOD1, GSTM3, GPX1, and GSR1) were exhibited by 

food grade silica (10-50 nm) after exposure to WI-38 cells (human lung normal fibroblasts) 

for 24 or 48 h (Athinarayanan et al., 2014). Decan et al also observed a loss of viability after 

exposure of lung epithelial cells (FE1 cells) to SiO2 NMs (5 -20 nm) (Decan et al., 2016). 

Assessment of cytotoxicity, genotoxicity and nuclear localization of SiO2 NMs (12-200 nm) 

exposed to undifferentiated and differentiated Caco-2 cells demonstrated a non-toxic effect 

after 5, 24, 48 and 72 h exposure (Gerloff et al., 2013; McCracken et al., 2016; McCracken et 

al., 2013; Sakai-Kato et al., 2014; Schübbe et al., 2012). However, IL-8 secretion was 

observed after undifferentiated Caco-2 cells were exposed to SiO2 NMs (15 nm) at highest 

concentration (32 µg/ml) whereas 55 nm sized SiO2 NMs did not induce IL-8 production 

(Tarantini et al., 2015b). The findings suggest that the physicochemical properties of SiO2 

NMs influence their toxicity, and that different cell types vary in their sensitivity to SiO2 NM 

toxicity. In vivo studies have demonstrated that SiO2 NMs (10-22 nm) are non-toxic after oral 

gavage, intratracheal instillation and intravenous administration to rats (Guichard et al., 2015; 

Hofmann et al., 2015; Tarantini et al., 2015a). Although, induction of IL-8 by SiO2 has been 

assessed, there is no published paper on the assessment of the toxicity of SiO2 via 

measurement of TEER and light microscopy post staining of the exposed cell with 

Romanowisky stain.  

Nanoclays are a form of layered minerals silicates, which could be natural or synthetic and 

are used in a diverse array of products. Different types of natural nanoclays exist 
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(montmorillonite (MMT), bentonite, zeolite, kaolinite, chlorite, halloysite palygorskite and 

sepiolite) (Chu and Garwood, 1992; Papoulis, 2011), but MMT is the most widely used 

nanoclay in health and industrial formulations (Baek et al., 2012; Sharma et al., 2010), hence 

the reason for selection of MMT for the study. 

MMT is a layered material that has a large specific surface area, high cation exchange 

capacity, high adsorption properties and adhesive ability (Aguzzi et al., 2007; Baek et al., 

2012; Maisanaba et al., 2015; Mallakpour and Dinari, 2011; Papoulis, 2011). These 

properties of MMT are usually harnessed for pharmaceutical uses such as drug delivery and 

protection of bioactive substances against harsh degradation in a biological environment 

(Aguzzi et al., 2007; Papoulis, 2011). MMT can also be used for food packaging materials 

due to its antimicrobial characteristics and impact on gas permeability (Maisanaba et al., 

2015; Thomas et al., 2012).  

Existing studies suggest that MMT is relatively non-toxic. MMT has been shown to induce 

cytotoxic effects, only at very high concentration (125 µg/ml) after 72 h exposure to human 

INT-407 intestinal cells (derived from HeLa cell line) whereas no toxicity was observed after 

oral administration of up to 1,000 mg/kg to mice (Baek et al., 2012). An increase in TNF-α, 

IL-6 and LDH secretion but there was an absence of micronucleus formation (indicator of 

genotoxicity) in A549 lung epithelial cells after exposure to MMT (200 μg/ml) (Huo et al., 

2015). Other researchers have also demonstrated a non-toxic effect after exposure of MMT to 

undifferentiated Caco-2 cells, with only organically modified MMT capable of inducing a 

cytotoxic effect via reactive oxygen species (ROS) production, glutathione increase and DNA 

damage (comet assay) (Maisanaba et al., 2014; Sharma et al., 2010). This implies that the 

toxicity of MMT is a result of the organic modification. Cu/Zn loaded MMT induced an 

increase in TEER ex vivo, anti-inflammatory cytokine (TGF-β1) mRNA expression, and 

protein levels, and downregulation of TNFα, IL6, IL8 and IL1β mRNA expression in the 
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intestine of weaned piglets after 21 days feeding of a mixture of basal diet and 2 g/kg Cu/Zn 

loaded MMT (Lefei et al., 2017). However, the difference between these published papers is 

that the toxicity of MMT was not studied using intestinal in vitro models. Therefore, the 

toxicity of undifferentiated and differentiated Caco-2 cells which have less physiological 

similarity to the in vivo intestine compared to co-cultures were not compared in previous 

studies.  

Due to a lack of published papers on impact of MMT and SiO2 NMs on the intestine and the 

anticipated increase in the ingestion of MMT and SiO2 NMs there is the need to investigate 

their toxicity to the intestine using simple and complex intestinal in vitro models. Therefore, 

the toxicity of SiO2 NMs and MMT were assessed in four in vitro intestinal models 

(undifferentiated Caco-2 cells, differentiated Caco-2 cells, Caco-2/HT29-MTX and Caco-

2/Raji B co-cultures) using TEER measurement, cytotoxicity, cell morphology (light 

microscopy) and IL-8 production. It was hypothesized that SiO2 and MMT will induce more 

toxicity to the Caco-2 monocultures than the co-culture models.  By using a battery of tests to 

assess NM toxicity and by employing a variety of in vitro models of varied complexity, a 

comprehensive assessment of SiO2 and MMT toxicity will be performed. The information 

obtained can be used to provide an evidence base for decision making purposes (e.g. to 

inform the selection of NMs to use in products, risk management), and to inform which in 

vitro models are prioritised when assessing NM toxicity to the intestine in the future. 

2. Materials and methods 

2.1. Nanomaterials 

Synthetic amorphous silicon dioxide (SiO2) NMs, also known as NM-202, was provided by 

the Fraunhofer Institute of Molecular Biology and Applied Ecology (IME, Germany) as a 

powder. These SiO2 NMs have been characterised by the European Commission’s Joint 
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Research Centre (JRC) Repository in Ispra, Italy 

(http://ihcp.jrc.ec.europa.eu/our_activities/nanotechnology/nanomaterials-repository). The 

primary particle size of SiO2 NMs, has been measured previously with TEM and ranged 

between 5 and 30 nm, with evidence that the NMs can agglomerate to a size ranging between 

10 and 600 nm. The specific surface area of the SiO2 NMs was 184.0 m
2
/g (Cotogno et al., 

2013; Rasmussen et al., 2013). MMT was provided as a kind gift from BYK (BYK additive 

and instrument Manchester, UK). The size of MMT was not provided by the supplier and due 

to its layered nature, it was not possible to measure its size with a scanning or transmission 

electron microscope. 

2.2. Nanomaterial preparation 

MMT and SiO2 NMs were dispersed by modifying the procedure developed by (Jacobsen et 

al., 2010). Briefly, the MMT nanoclay was suspended in Mili Q H2O to obtain a 1 mg/ml 

stock suspension, which was vortexed for 30 sec. and then mixed for 1 h with a Dynal sample 

mixer (MXIC1, 18 RPM) fetal bovine serum (FBS) was then added to give a final 

concentration of 2 % FBS in the suspension. SiO2 NMs were dispersed in 2 % FBS in Milli Q 

de-ionised water at a concentration of 1mg/ml. The MMT nanoclay and SiO2 suspensions 

were then sonicated for 16 min in a bath sonicator without pause. Following the sonication 

step, all samples were used immediately. After sonication the required concentration for each 

experiment was obtained by serial dilution in the appropriate cell culture medium. To 

determine the acute toxicity of MMT and SiO2 NMs, 10 concentrations of the NMs were 

prepared and ranged between 0.37 to 78.13 µg/cm
2
 (equivalent to 1.17 to 250 µg/ml).  

2.4. Dynamic light scattering analysis 

The hydrodynamic diameter, zeta potential and polydispersity index (PdI) of SiO2 NMs and 

MMT nanoclay were measured in biological media (MEM and DMEM complete cell culture 
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medium) using dynamic light scattering (DLS) (Malvern Zetasizer Nano series). SiO2 NMs 

and MMT were prepared as described above and the concentration was adjusted to 100 μg/ml 

via dilution in phenol red free cell culture medium supplemented with 10 % FBS, 100 U/ml 

penicillin/streptomycin, 100 IU/ml NEAA, and 2 mM L-glutamine). The hydrodynamic 

diameter, PdI and Zeta potential of the samples were measured in triplicate at 0 h and at 24 h 

(following incubation at 37 °C). 

2.5. Cell culture 

The human colon colorectal adenocarcinoma Caco-2 cell line and Human Burkitti’s 

lymphoma; B lymphocyte (Raji B) cell line were obtained from the American Type Culture 

Collection (ATCC) (USA). The HT29-MTX clone E-12 cell line was obtained from the 

European Collection of Authentic Cell Culture (ECACC) (UK). Caco-2 and HT29-MTX cells 

were maintained in 4.5 g/l glucose Dulbecco’s modified eagle medium (DMEM) (Sigma) 

supplemented with 10 % heat inactivated FBS (Gibco Life Technologies), 100 U/ml 

Penicillin/Streptomycin (Gibco Life Technologies), 100 IU/ml NEAA (Gibco Life 

Technologies), and 2 mM L- glutamine (Gibco Life Technologies) (termed DMEM complete 

cell culture medium), at 37 ºC and 5 % CO2 and 95 % humidity. Raji B cells were maintained 

in Roswell Park Memorial Institute (RPMI) 1640 Medium (Gibco Life Technologies) 

supplemented with 10 % heat inactivated FBS (Gibco Life Technologies), 100 U/ml 

Penicillin/Streptomycin (Gibco Life Technologies) (termed RPMI complete cell culture 

medium) and at 37 ºC, 5 % CO2 and 95 % humidity. 

Differentiated Caco-2 cells were cultured on 3.0 µm pore polycarbonate transwell inserts in a 

12 well plate with a growth area of 1.12 cm
2
 (Costar corning, Flintshire, UK). Cells were 

seeded at a concentration of 3.13 x 10
5 

cells/cm
2
 (500 µl/well) in DMEM complete cell 

culture medium into the AP compartment of the transwell insert, and the BL compartment 

was filled with 1.5 ml of DMEM complete cell culture medium. The cells were cultured at 37 
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o
C, 5 % CO2 and 95 % humidity for 18-21 days. The medium was changed every other day 

for the first 16 days and then every day until 21 days.  

The Caco-2/Raji B co-culture (M cell model) of the gastrointestinal epithelium was cultivated 

by modifying the protocol  previously described by (des Rieux et al., 2005; Gullberg et al., 

2000; Schimpel et al., 2014). Briefly, 3.13 x 10
5
 cells/cm

2
 of Caco-2 cells were suspended in 

0.5 ml of DMEM complete cell culture medium and seeded into the AP compartment of 3.0 

µm pore polycarbonate transwell inserts in a 12- well plate, with a growth area of 1.12 cm
2
 

(Corning) and grown for 15 days at 37 
o
C, 5 % CO2 and 95 % humidity. The medium in both 

the AP (0.5 ml) and BL (1.5 ml) compartments was changed every other day. On the 15th 

day, 5 x 10
5
 cells/ml of Raji B cells were suspended in DMEM complete cell culture medium 

(1.5 ml) and seeded into the BL compartment. The co-culture was grown for 5 days under 

standard incubation conditions and the medium was changed only in the AP compartment 

every day.  

The Caco-2/HT29-MTX co-culture (mucus secreting) model of the gastrointestinal 

epithelium was cultured by modifying the protocol of (Georgantzopoulou et al., 2016; Pan et 

al., 2015). Briefly, 3.13 x 10
5
 cells/cm

2
 of Caco-2 and HT29-MTX cells were seeded into the 

AP compartment of 3.0 µm pore polycarbonate transwell inserts in a 12-well plate with a 

growth area of 1.12 cm
2 

(Costar corning, Flintshire, UK) at a ratio of 9:1. The co-culture was 

maintained in 4.5 g/l glucose DMEM complete cell culture medium. The cells were 

cultivated at 37 
o
C, 5 % CO2 and 95 % humidity for 20-21 days and the medium changed 

every other day for the first 16 days and then every day until the 21
st
 day. The differentiation 

status of differentiated Caco-2 cells, Caco-2/Raji B and Caco-2/HT29-MTX co-cultures was 

confirmed via measurement of TEER, tight junction staining and via visualisation of 

microvilli using Scanning Electron Microscopy (SEM) as described previously (Ude et al., 
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2017). Only cell models with TEER values greater than 500 Ω.cm
2
 were used for 

experiments.  

2.6. Alamar blue cell viability assay 

The viability of undifferentiated Caco-2 cells exposed to SiO2 NMs and MMT was assessed 

via the Alamar blue assay. Caco-2 cells were seeded at a concentration of 1.56 x 10
5
 cells 

/cm
2
 into a 96 well plate (surface area 0.32 cm

2
) (Costar Corning Flintshire UK) and 

incubated at 37 ºC and 5 % CO2 for 24 h. The cells were then washed twice with 

PBS (Gibco Life Technologies) and exposed to 100 µl of MEM complete cell culture 

medium (negative control), 0.1 % triton-X 100 (positive control), and SiO2 NMS or MMT at 

concentrations ranging from 0.37 to 78.13 µg/cm
2
. After 24 h, the cells were washed twice 

with PBS and exposed to 100 µl of Alamar blue reagent (0.1 mg/ml in MEM complete cell 

culture medium) (Sigma, Poole). The cells were incubated for 4 h at 37 ºC, 5 % CO2 and 

fluorescence measured with a microplate reader (SpectraMax M5) at a wavelength of 

560/590 nm (excitation/emission). Data are expressed as mean % viability (i.e. % of the 

negative control). 

2.7. Evaluation of acellular and intracellular ROS production 

Acellular ROS production by SiO2 NMs and MMT was investigated by modifying the 

methods described by Foucaud et al. (2007) and Sauvain et al. (2013). Briefly, 10 mM 

DCFH-DA (2',7'-Dichlorofluorescin diacetate in methanol) was hydrolysed by diluting 10 

mM DCFH-DA to a concentration of 1 mM in methanol and then to 0.2 mM in 0.01M 

NaOH. The solution was incubated at RT for 30 min in the dark and 0.1M PBS (pH 7.4) was 

then added to stop the reaction (to give a concentration of 0.05 mM DCF). The reaction 

mixture was then placed on ice and used immediately. As a control, an equivalent volume of 

0.01 M NaOH, 0.1 M PBS (pH 7.4) and methanol was prepared without DCFH-DA. The 
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DCFH reaction mixture or the mixture without DCFH-DA was transferred to the wells of a 

black clear bottomed 96 well plate (225 µl/well) in triplicate. This was followed by the 

addition of 25 µl of MEM complete cell culture medium without phenol red (negative 

control), 7.81 or 15.63 µg/cm
2
 of SiO2 or MMT and 1mM of H2O2 (positive control) (in 

complete MEM cell culture medium without phenol red). The fluorescence generated by 

DCF oxidation was measured at time zero and 2 h at 485/530 nm (ex/em) with constant 

shaking at RT. Data are expressed as mean fold change (compared to the control). 

For cellular ROS production, undifferentiated Caco-2 cells (1.56 x10
5
 cells /cm

2
) were grown 

in a 96 well plate (Costar Corning) and maintained at 37 
o
C, 5 % CO2 and 95 % humidity for 

24 h. Cells were then washed twice with PBS and 150 µM of DCFH-DA (in Hanks’ Balanced 

Salt Solution (HBSS)) was added (100 µl). The cells were then incubated for 1 h in the dark 

at 37 
o
C, 5 % CO2 and 95 % humidity. Next, the cells were washed with PBS and exposed to 

HBSS (untreated control), 7.81, 15.63 or 31.25 µg/cm
2
 of SiO2 NMs or MMT and 1mM 

H2O2 (positive control) diluted in HBSS and incubated at 37 
o
C, 5 % CO2 and 95 % humidity. 

The fluorescent readings were taken at 0 h and 2 h at a wavelength of 485/530 nm 

(excitation/emission) using a SpectraMax M5 (California USA) microplate reader, Data are 

expressed as mean fold change, compared to the control. 

2.8. Investigation of the impact of SiO2 NMs and MMT on intestinal cell barrier 

integrity using TEER measurement 

TEER was measured after exposure of differentiated Caco-2 cells, and the Caco-2/HT29-

MTX and Caco-2/Raji B co-cultures to DMEM complete cell culture medium (untreated 

control), 7.81 or 15.63 µg/cm
2
 of SiO2 NMs or MMT for 24 h as described in Ude et al., 

(2017). 

Romanowsky staining: Cell morphology 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

14 

 

Undifferentiated Caco-2 cells were seeded at a concentration of 3.13 x 10
5
 cells/cm

2
 and 

grown on a 10 mm glass coverslip in a 24 well plate (Costar Corning, Flintshire, UK) and 

incubated at 37 
o
C, 5 % CO2 and 95 % humidity for 24h. Cells were then exposed to DMEM 

complete cell culture medium (control), 7.81 or 15.63 µg/cm
2
 SiO2 NMs or MMT for 24 h. 

Differentiated Caco-2 cells, Caco-2/HT29-MTX and Caco-2/Raji B co-cultures were treated 

with DMEM complete cell culture medium (control) and 15.63 µg/cm
2
 of SiO2 NMs or MMT 

for 24 h. Following exposure, cells were stained with Rapid Romanowsky stain (TCS 

Biosciences, England). The glass coverslips or polycarbonate inserts were mounted onto 

glass slides with DPX (Sigma, Poole UK) and covered with a glass coverslip. Cells were 

viewed and imaged using a light microscope-Zeiss fluorescent microscope, Carl Zeiss Axio 

Scope A 1 Upright Research Microscope (Germany) fitted with camera (ZEISS Axiocam 

ERc 5s) (magnification 40 X). 

2.9. IL-8  

The supernatant from undifferentiated Caco-2 cells exposed to DMEM complete cell culture 

medium (control), 7.81, 15.63 and 31.25 µg/cm
2
 of SiO2 NMs or MMT and supernatants 

from differentiated Caco-2 cells, Caco-2/HT29-MTX and Caco-2/Raji B co-cultures exposed 

to DMEM complete cell culture medium (control), 7.81 and 15.63 µg/cm
2
 SiO2 NMs or 

MMT for 24 h were used to assess IL-8 production using an Enzyme-Linked Immunosorbent 

Assay (ELISA) (R&D System, Inc., Minneapolis, MN USA) following the manufacturer’s 

protocol. Absorbance was measured using a SpectraMax M5 microplate reader (California 

USA) at a wavelength of 450 nm and the IL-8 concentration in samples was calculated from 

the standard curve. Data are expressed as mean IL-8 concentration (pg/ml). 

2.10. Data analysis 
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All experiments were repeated at least three times (on different days) and all data are 

expressed as mean ± standard error of the mean (SEM). The figures were generated using 

Graph Pad Prism. A one-way analysis of variance (ANOVA) with a Tukeys multiple 

comparison was performed, after the normality check to assess statistical significance, using 

Minitab 17 software.  

3. Results 

3.1. Characterisation of the SiO2 and MMT 

SiO2 NMs and MMT were characterised by measuring hydrodynamic diameter, zeta potential 

and PdI using DLS (Table 1 and 2) after dispersion in MEM and DMEM complete cell 

culture medium at 0 and 24 h. The average hydrodynamic diameter of SiO2 NMs in MEM 

and DMEM was 133.07 and 125.57 nm at 0 h respectively and 162.58 and 139.34 nm post 24 

h incubation respectively. SiO2 NMs were therefore agglomerated in both MEM and DMEM 

complete media at both time points investigated, as the primary size was between 5-30 nm 

(Rasmussen et al., 2013). The zeta potential of SiO2 NM suspensions was negative, ranging 

from -8.61 to -10.01 mV and the PdI ranged between 0.59 and 8.3. The hydrodynamic 

diameter of MMT was 276.24 and 294.23 at 0 and 24 h respectively. The zeta potential was 

negative, ranging from -9.2 to -10.1 mV. Incubation of MMT for 24 h did not affect the zeta 

potential or the PdI (0.56-0.69). 
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 Time (h)  0 24  

 

Complete 

MEM 

Hydrodynamic diameter (nm) 133.07±7.80 162.58 ±5.81 

Zeta Potential (mV) -10.01±0.30 -8.61±0.38 

PdI 0.71±0.07 0.69±0.02 

 

Complete 

DMEM 

Hydrodynamic diameter (nm) 125.57±10.09 139.34±12.88 

Zeta Potential (mV) -9.28±0.50 -8.95±0.69 

PdI 0.83±0.09 0.59±0.05 

Table 1: Hydrodynamic diameter, zeta potential and polydispersity index (PdI) values of SiO2 

NMs in MEM and DMEM complete cell culture medium. Data are expressed as mean ± SEM 

(n=3). 
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 Time (h) 0 24  

 

Complete 

MEM 

Hydrodynamic diameter (nm) 276.24±15.44 294.23±13.30 

Zeta Potential (mV) -9.22±0.20 -10.10±0.089 

PdI 0.57±0.02 0.59±0.03 

 

Complete 

DMEM 

Hydrodynamic diameter (nm) 275.57±13.36 335.04±9.12 

Zeta Potential (mV) -9.36±0.65 -10.02±0.20 

PdI 0.56±0.02 0.69±0.01 

Table 2: Hydrodynamic diameter, zeta potential and polydispersity index (PdI) values of 

MMT in MEM and DMEM complete cell culture medium. Data are expressed as mean ± 

SEM (n=3). 

3.2. Alamar blue cell viability assay   

Viability of undifferentiated Caco-2 cells was assessed using the Alamar blue assay after 

treatment with SiO2 NMs and MMT for 24 h. No loss of cell viability was observed at all 

concentrations tested, for both NMs (Figure 1).  
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Figure 1: Cytotoxicity of SiO2 NMs and MMT to undifferentiated Caco-2 cells. 

Viability of undifferentiated Caco-2 cells was assessed using the Alamar blue assay following 

exposure of cells to MEM complete cell culture medium (control), SiO2 NMs or MMT at 

concentrations ranging from 0.61 and 78.13 µg/cm
2
 for 24 h. Viability of Caco-2 cells was 

assessed using the Alamar blue assay, and data are expressed as mean % of the control (i.e. % 

viability) ± SEM (n = 3). 

3.3. ROS formation 

Acellular ROS production by SiO2 NMs and MMT was assessed via the DCFH-DA assay 

(Figure 2). There was no significant production of ROS by SiO2 NMs and MMT at 2 h 

whereas H2O2 produced a significant increase in ROS (~5 fold), compared to the control.  

ROS production was also assessed in undifferentiated Caco-2 cells at 2 h post exposure 

(Figure 3). SiO2 NMs and MMT (at all treatment concentrations) did not stimulate ROS 

production. A significant increase in ROS production was observed in H2O2 exposed cells 

(Figure 3). Since SiO2 NMs and MMT did not stimulate ROS production in acellular 

conditions and in undifferentiated Caco-2 cells, ROS production was not investigated in the 
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differentiated Caco-2 cells and the co-culture models as they are known to be less responsive 

to NM toxicity (e.g. Ude et al., 2017). 
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Figure 2: Acellular ROS production by SiO2 NMs and MMT at 2 h. Acellular ROS levels 

were determined in cell culture medium (0), and for SiO2 NMs and MMT at concentrations of 

7.81 and 15.63 µg/cm
2
 using the DCFH-DA assay at 2 h post exposure. Data are expressed as 

mean fold change (compared to the control) ± SEM (n = 3). 
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Figure 3: ROS formation by undifferentiated Caco-2 cells 2 h post exposure to SiO2 NMs and 

MMT. Intracellular ROS levels were determined using the DCFH-DA assay in 

undifferentiated Caco-2 cells following exposure to cell culture medium (control, 0), H2O2, 

SiO2 NMs or MMT at concentrations of 7.81, 15.63, 31.25 µg/cm
2 

for 2h. Data are expressed 

as mean fold change (compared to the control) ± SEM (n = 3). 

3.4. Impact of SiO2 NMs and MMT on cell morphology 

The impact of SiO2 NMs and MMT on intestinal barrier integrity was investigated in 

differentiated Caco-2 cells, Caco-2/HT29-MTX and Caco-2/Raji B co-culture models via 

assessment of TEER measurement and light microscopy (Romanowisky staining). The TEER 

values were similar to the control following exposure of all cell models to SiO2 NMs and 

MMT at all concentrations and time points (Figure 4). There was no difference in cell number 

and the structural morphology of undifferentiated Caco-2 cells, differentiated Caco-2 cells, 

Caco-2/HT29-MTX and Caco-2/Raji B co-cultures compared to control after 24 h treatment 

with SiO2 NMs and MMT, suggesting that there was no loss in cell viability (Figure 5). 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

21 

 

 

Figure 4: Impact of SiO2 NMs and MMT on in vitro intestinal model TEER values. 

Differentiated Caco-2 cells (A), the Caco-2/HT29-MTX co-culture (B), and the Caco-2/Raji 

B co-culture (C) were exposed to cell culture medium (control, 0), SiO2 NMs and MMT at 

concentrations of 7.81 or 15.63 µg/cm
2
 for 24 h. The TEER values were measured using 

epithelial voltohmmeter EVOM every 3 h. Data are expressed as mean TEER value ± SEM 

(n = 3). 
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Figure 5: Impact of SiO2 NMs and MMT on in vitro intestinal cell morphology. A) 

Undifferentiated Caco-2 cells, B) Differentiated Caco-2 cells, Caco-2/HT29-MTX and Caco-

2/Raji B co-cultures were exposed to cell culture medium (control) and 7.81 or 15.63 µg/cm
2
 

of SiO2 NMs or MMT and cultured for 24 h. The cells were fixed, stained and visualised 

using the light microscopy (magnification 40 X, scale bar=20 µm. Representative images are 

shown (n=3). 
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3.5. IL-8 production 

A significant increase in IL-8 production was observed after exposure of undifferentiated 

Caco-2 cells to SiO2 NMs for 24 h at all concentrations compared to control which was below 

detectable limit by ELISA. In contrast IL-8 production was comparable to the control 

following exposure of undifferentiated Caco-2 cells to 15.63 and 31.25 µg/cm
2
 of MMT 

(Figure 6A).  

Differentiated Caco-2 cells exposed to 7.81 and 15.63 µg/cm
2
 SiO2 NMs demonstrated a 

significant increase in IL-8 secretion (32.91 and 31.09 pg/ml respectively), compared to 

control which was below detectable limit by ELISA (Figure 6B). No IL-8 production was 

detected following exposure of differentiated Caco-2 cells to MMT. Generally, IL-8 secretion 

induced by MMT and the untreated control in differentiated Caco-2 cells was below the limit 

of detection. 

SiO2 NMs (7.81 and 15.63 µg/cm
2
) stimulated a significant increase in IL-8 production 

(48.55 and 69.96 pg/ml respectively) by the Caco-2/HT29-MTX co-culture at 24 h post 

exposure compared to control (Figure 6C). No IL-8 production from the Caco-2/HT29-MTX 

co-culture exposed to MMT or cell culture medium (control) was detected. (Figure 6C). The 

Caco-2/Raji B co-culture secreted a concentration of 57.91 and 48.13 pg/ml of IL-8 after 

exposure to SiO2 NMs (at concentrations of 7.81 and 15.63 µg/cm
2
 respectively). There was 

no detectable secretion of IL-8 by MMT and the control by the Caco-2/Raji B co-culture 

(Figure 6D).  
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Figure 6: IL-8 production by undifferentiated Caco-2 cells, differentiated Caco-2 cells, and 

the Caco-2/HT29-MTX and Caco-2/Raji B co-cultures. Undifferentiated Caco-2 cells (A), 

differentiated Caco-2 cells (B), the Caco-2/HT29-MTX co-culture (C) and the Caco-2/Raji B 

co-culture (D) were exposed to cell culture medium (control, 0), SiO2 NMs or MMT at 

concentrations of 7.81, 15.63 or 31.25 µg/cm
2
 for 24 h. The level of IL-8 in the cell 

supernatant was determined using an ELISA. Data are expressed as mean IL-8 concentration 

(pg/ml) ± SEM (n = 3). Significance at P<0.05 is indicated by * compared to control. 

4. Discussion  

In this study the toxicity of SiO2 NMs and MTT was assessed to a range of in vitro models of 

varied complexity (undifferentiated Caco-2 cells, differentiated Caco-2 cells, Caco-2/HT29-

MTX and Caco-2/Raji B co-cultures), using a battery of endpoints. Obtained data suggests 
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that both NMs are of relatively low toxicity. The in vitro models employed in this study were 

used previously to assess the toxicity and translocation of copper oxide nanomaterials (CuO 

NMs) and copper sulphate (CuSO4) (Ude et al., 2017, Ude et al., 2018). It was observed 

whilst CuO NMs and CuSO4 stimulated toxicity across all models, the undifferentiated Caco-

2 cells were more sensitive than the differentiated Caco-2 cells, and that the co-cultures were 

least sensitive (Ude et al., 2017, Ude et al., 2018).  

4.1. Physicochemical properties of SiO2 and MMT 

Both SiO2 NMs and MMT are likely to be agglomerated in the cell culture medium. The 

primary size of SiO2 NMs have been shown to range between 5 and 30 nm (Rasmussen et al., 

2013) indicating that SiO2 NMs agglomerated in cell culture media. The primary size of 

MMT is not known as they are in layered form with a thickness of 1nm and so it was not 

possible to measure the size using electron microscopy. Agglomeration of synthetic 

amorphous SiO2 NMs has been reported (Rasmussen et al., 2013).  

4.2. Cytotoxicity and impact of SiO2 NMs and MMT on cell morphology 

The Alamar blue assay was used to assess the viability of undifferentiated Caco-2 cells after 

exposure to SiO2 NMs and MMT at 24 h post exposure. Both SiO2 NMs and MMT did not 

cause cytotoxicity. A similar lack of cytotoxicity has been reported of SiO2 NMs of various 

physicochemical properties on undifferentiated Caco-2 cells up 72 h post exposure (Gerloff et 

al., 2013; McCracken et al., 2016; McCracken et al., 2013; Sakai-Kato et al., 2014; Schübbe 

et al., 2012). On the other hand, FE1 (human lung epithelial) and WI-38 (human fibroblast) 

cells demonstrated slight cytotoxicity at 24 and 48 h post exposure of Si and SiO2 NMs 

(Athinarayanan et al., 2014; Decan et al., 2016). Although, the study by Athinarayanan et al 

used the same type of SiO2 as used in this study, cytotoxicity assessment was performed with 

the MTT assay whereas this study used Alamar blue, which may explain why different results 
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were obtained as different viability assays vary in their sensitivity. Furthermore, different cell 

types are likely to differ in their susceptibility to SiO2 NM toxicity. MMT has also shown a 

non-toxic effect at 24 h post exposure to undifferentiated Caco-2 cells (Maisanaba et al., 

2014; Sharma et al., 2010) whereas long term exposure of INT-407 cells (HeLa derived cell 

line) to MMT induced cytotoxicity only at high concentration (125 µg/ml) (Baek et al., 

2012). Our findings are therefore in agreement with existing research and suggest that MTT 

is relatively non-toxic. 

The toxicity of SiO2 NMs and MMT on undifferentiated Caco-2 cells was also investigated 

with light microscopy after exposure to SiO2 NMs and MMT, and these findings confirmed 

the findings obtained from the Alamar Blue assay.  

Whilst several studies have assessed the impacts of SiO2 NMs and MTT on undifferentiated 

cells, as described above, a lack of studies have evaluated impacts on more complex models. 

The Alamar blue assay cannot be applied to differentiated Caco-2 models and co-cultures in a 

transwell insert, and previous studies using CuO NMs demonstrated that light microscopy 

provided a useful and rapid insight into the cytotoxicity of NMs (Ude et al., 2017). Therefore, 

light microscopy was employed to perform a direct comparison of NM cytotoxicity across 

different intestinal in vitro models. SiO2 NMs and MMT did not impact on the confluence or 

morphology of the exposed cells (in all models used), compared to the control, suggesting 

that these NMs were not toxic. Light microscopy has not been used to study the toxicity of 

SiO2 NMs and MMT in intestinal models (e.g. differentiated Caco-2 cells, Caco-2/HT29-

MTX and Caco-2/Raji B co-culture) previously. However, use of light microscopy to assess 

toxicity of NMs has been used for other cell types. For example, the toxicity of Ag NMs, 

ufCB and TiO2 to differentiated HL-60 neutrophil- like cells has been studied using light 

microscopy and change in a cell morphology and reduced cell viability was observed after 

exposure to Ag NMs and ufCB (Johnston et al. 2015).  Reduction in cell number and viability 
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was also observed after exposure of CuO NMs and CuSO4 to undifferentiated Caco-2 cells  

(Ude et al., 2017). Therefore, whilst light microscopy does not provide a quantitative 

assessment of NM cytotoxicity, and has not been commonly used to assess the response of 

Caco-2 cells to NMs previously it is a rapid and cost-effective method that can be used to 

explore the impact of NMs on cell viability and morphology, and it is therefore recommended 

that it is used more commonly to assess NM toxicity in vitro. 

TEER measurement was also used to assess the integrity of the intestinal barrier in 

differentiated Caco-2 cells, Caco-2/HT29-MTX and Caco-2/Raji B co-cultures after exposure 

to SiO2 NMs and MMT. No impact on TEER value was observed after exposure to SiO2 NMs 

and MMT compared to control suggesting that SiO2 NMs and MMT were not toxic at the 

exposed concentrations. In contrast, exposure of CuO NMs and CuSO4 to differentiated 

Caco-2 cells caused a concentration and time dependent reduction in the TEER value 

compared to control (Ude et al., 2017). In addition, Cu/Zn loaded MMT exposed to the 

intestine of weaned piglets has been shown to increase in TEER value ex vivo (Lefei et al., 

2017) suggesting that Cu/Zn loaded MMT was not toxic at the test concentration. There are 

no published papers that have studied the toxicity of SiO2 NMs and MMT to the intestine in 

vitro by measuring the TEER values. However a decrease in TEER has been reported after 

exposure of CuO, Ag, TiO2 and polystyrene NMs to differentiated Caco-2 cells (Piret et al., 

2012), Caco-2/HT29-MTX (Brun et al., 2014; Walczak et al., 2015) and the Caco-2/Raji B 

co-culture (Bouwmeester et al., 2011; Lozoya-Agullo et al., 2017).  However, in previous 

studies TEER was only measured at one-time point, making their study different from this 

present study. Measurement of TEER values maximises the amount of information obtained 

for one measurement of toxicity study, therefore it is recommended that future studies 

continue to assess TEER over time as an indicator of NM toxicity. 

4.3. ROS production 
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Since stimulation of oxidative stress is known as key mechanism underlying NM toxicity 

(Abbott Chalew and Schwab, 2013; Abdal Dayem et al., 2017; Fu et al., 2014; Johnston et 

al., 2010; Onodera et al., 2015), acellular and cellular ROS production by SiO2 NMs and 

MMT was assessed via the DCFH-DA assay. SiO2 NMs did not produce ROS in acellular 

conditions and undifferentiated Caco-2 cells. Similar results were reported after exposure of 

human gastric epithelial cells (GES-1) and undifferentiated Caco-2 cells to SiO2 NMs (10-50 

nm) (Kaiser et al., 2013; Tarantini et al., 2015b; Yang et al., 2014). However, ROS 

production has been stimulated by SiO2 NMs in human lung fibroblast cells (Athinarayanan 

et al., 2014). ROS formation was also mediated in A549 and HepG2 epithelial cells and 

NIH/3T3 fibroblasts at post 24 h exposure to different sizes of SiO2 NMs (20, 60, 100 and 

200 nm) and  100 and 200 nm SiO2 NMs generated greater ROS compared to 20 and 60 nm 

(Kim et al., 2015). These findings therefore indicate that SIO2 NMs may stimulate cell 

dependent toxicity. Of interest is that SiO2 NMs (14 nm) induced acellular ROS production 

when assessed in artificial digested and undigested form using Electron Paramagnetic 

Resonance (EPR) (Gerloff et al., 2013). Therefore, the physicochemical properties of SiO2 

NMs are likely to influence whether they stimulate ROS production in acellular and acellular 

conditions.  

MMT also demonstrated no increase in acellular and cellular ROS with the DCFH-DA assay 

in this study. Absence of acellular and cellular ROS production after exposure up to 170 

μg/ml of MMT to undifferentiated Caco-2 cells for 24 h has also been reported (Sharma et 

al., 2010). However, an increase in ROS production after exposure of 40 µg/ml of MMT to 

undifferentiated Caco-2 cells has also been demonstrated, at 24 and 48 h post exposure 

(Maisanaba et al., 2014) however, the MMT concentration were higher than the concentration 

used in this present study.  
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Previous studies demonstrated that ROS production stimulated by CuO NMs and CuSO4 was 

greater in undifferentiated Caco-2 cells than differentiated Caco-2 cells and co-cultures (Ude 

et al., 2017, 2018). Therefore, due to an absence of ROS production by SiO2 NMs and MTT 

in undifferentiated Caco-2 cells (in our study and those of the wider scientific community) 

ROS production was not assessed in the differentiated cells and co-cultures. 

4.4. IL-8 production 

IL-8 production is one of the prominent markers used for the study of NM toxicity in 

intestinal in vitro models. SiO2 NMs exposed to undifferentiated Caco-2 cells, differentiated 

Caco-2 cells, Caco-2/HT29-MTX and Caco-2/Raji B co-cultures for 24 h induced IL-8 

production at all concentrations tested. Although SiO2 NMs stimulated IL-8 secretion was 

statistically significant, it is unlikely to be biologically significant as only a relatively small 

increase in cytokine production was observed. 

There are conflicting findings in the literature about whether SiO2 stimulates IL-8 production 

from cells in vitro. For example, Tarantini et al. (2015b) reported a similar level of IL-8 

production to this study after exposure of 32 µg/ml of SiO2 NMs (15 nm) to undifferentiated 

Caco-2 cells, with a lack of induction of IL-8 by lower concentrations and at all 

concentrations of larger SiO2 NMs (55 nm), indicating a size and concentration dependent IL-

8 release. Another researcher reported a lack of IL-8 expression by undifferentiated and 

differentiated Caco-2 cells after exposure to SiO2 NMs (14 nm) (Gerloff et al., 2013). In 

contrast, an increase in IL-8 secretion has been reported after exposure of A549 monoculture 

and A549/THP-1 co-cultures to SiO2 NMs (10 to 60 nm) (Choi et al., 2009; Wottrich et al., 

2004). Normal mesothelial cells (MET-5A) exposed to both nano and micro silica particles 

also demonstrated an increase in IL-8 secretion (Brown et al., 2007). This suggests that IL-8 

release after exposure to SiO2 NMs may be cell dependent, as Caco-2 cells seem to have 

lower response compared to the other cell types. 
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In this study, MMT did not stimulate IL-8 release 24 h post exposure to undifferentiated 

Caco-2 cells, differentiated Caco-2 cells, Caco-2/HT29-MTX and Caco-2/Raji B co-culture. 

Lefei et al. (2017) reported a decrease in mRNA expression of pro-inflammatory cytokines 

such as TNFα, IL6, IL8 and IL1β after oral exposure of copper/zinc-loaded montmorillonite 

to weaned piglets in vivo. MMT induced a significant increase in IL-6 after exposure of A549 

lung epithelial cells  (Huo et al., 2015). The level of cytokine produced are unlikely to be 

physiologically relevant as small levels of IL-8 were produced in all the intestinal models.  

5. Conclusions  

SiO2 NMs and MMT were non-toxic to undifferentiated Caco-2 cells when toxicity was 

assessed via the Alamar blue assay, light microscopy, and ROS formation. In addition, SiO2 

NMs and MMT did not elicit toxicity to differentiated Caco-2 cells, Caco-2/HT29-MTX and 

Caco-2/Raji B co-cultures when light microscopy, and TEER was used to assess toxicity. 

Whilst SiO2 NMs stimulated IL-8 release in all the intestinal in vitro models, no IL-8 

secretion was induced by MMT. These findings can be used to inform the testing strategy 

used to assess the toxicity of ingested NMs in the future (e.g. model and endpoint selection), 

and by providing information on the toxicity of food relevant NMs can be used to inform the 

safe use of NMs in products (e.g. decision making about NM use).  
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Highlights 

 The toxicity of nanomaterials (NMs) that are likely to be ingested was investigated in 

vitro 

 Silicon dioxide (SiO2) NMs and Montmorillonite (MMT) did not cause cytotoxicity in 

intestinal models of varied complexity in vitro 

 SiO2 NMs and MMT did not induce reactive oxygen species production in intestinal 

cells in vitro. 

 SiO2 NMs and MMT had no impact on cell morphology of intestinal cells in vitro. 

 SiO2 but not MMT stimulated IL-8 production by intestinal cells in vitro. 
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