56 research outputs found

    Malignant Mesothelioma in the Thoracic Cavity of a Crj:CD(SD) Rat Characterized by Round Hyalinous Stroma

    Get PDF
    Spontaneous malignant mesothelioma was found in a 104-week-old male Crj:CD(SD) rat. The tumor was scattered on the surface of the lung, heart, mediastinal pleura and thoracic wall and metastasized to the alveolar septa. Histopathologically, small flattened or cuboidal tumor cells proliferated with stroma, formed almost normal papillary structures and reacted positively to colloidal iron stain and immunohistochemical staining for mesothelin. Round hyalinous stromata were pronounced, which is a characteristic feature, and the possible reason for this is as follows; at first, a small amount of collagen fibers was formed in the center of the clusters of several tumor cells, and then the cell clusters expanded like balloons with an increase in the collagen fibers

    Reliability of Synaptic Transmission at the Synapses of Held In Vivo under Acoustic Stimulation

    Get PDF
    BACKGROUND:The giant synapses of Held play an important role in high-fidelity auditory processing and provide a model system for synaptic transmission at central synapses. Whether transmission of action potentials can fail at these synapses has been investigated in recent studies. At the endbulbs of Held in the anteroventral cochlear nucleus (AVCN) a consistent picture emerged, whereas at the calyx of Held in the medial nucleus of the trapezoid body (MNTB) results on the reliability of transmission remain inconsistent. In vivo this discrepancy could be due to the difficulty in identifying failures of transmission. METHODS/FINDINGS:We introduce a novel method for detecting unreliable transmission in vivo. Based on the temporal relationship between a cells' waveform and other potentials in the recordings, a statistical test is developed that provides a balanced decision between the presence and the absence of failures. Its performance is quantified using simulated voltage recordings and found to exhibit a high level of accuracy. The method was applied to extracellular recordings from the synapses of Held in vivo. At the calyces of Held failures of transmission were found only rarely. By contrast, at the endbulbs of Held in the AVCN failures were found under spontaneous, excited, and suppressed conditions. In accordance with previous studies, failures occurred most abundantly in the suppressed condition, suggesting a role for inhibition. CONCLUSIONS/SIGNIFICANCE:Under the investigated activity conditions/anesthesia, transmission seems to remain largely unimpeded in the MNTB, whereas in the AVCN the occurrence of failures is related to inhibition and could be the basis/result of computational mechanisms for temporal processing. More generally, our approach provides a formal tool for studying the reliability of transmission with high statistical accuracy under typical in vivo recording conditions

    Disruption of Lateral Efferent Pathways: Functional Changes in Auditory Evoked Responses

    Full text link
    The functional consequences of selectively lesioning the lateral olivocochlear efferent system in guinea pigs were studied. The lateral superior olive (LSO) contains the cell bodies of lateral olivocochlear neurons. Melittin, a cytotoxic chemical, was injected into the brain stem using stereotaxic coordinates and near-field evoked potentials to target the LSO. Brain stem histology revealed discrete damage to the LSO following the injections. Functional consequences of this damage were reflected in depressed amplitude of the compound action potential of the eighth nerve (CAP) following the lesion. Threshold sensitivity and N1 latencies were relatively unchanged. Onset adaptation of the cubic distortion product otoacoustic emission (DPOAE) was evident, suggesting a reasonably intact medial efferent system. The present results provide the first report of functional changes induced by isolated manipulation of the lateral efferent pathway. They also confirm the suggestion that changes in single-unit auditory nerve activity after cutting the olivocochlear bundle are probably a consequence of disrupting the more lateral of the two olivocochlear efferent pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41379/1/10162_2002_Article_3018.pd

    Acoustic trauma slows AMPAR-mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function

    Get PDF
    Damaging levels of sound (acoustic trauma, AT) diminish peripheral synapses, but what is the impact on the central auditory pathway? Developmental maturation of synaptic function and hearing were characterized in the mouse lateral superior olive (LSO) from postnatal day 7 (P7) to P96 using voltage-clamp and auditory brainstem responses. IPSCs and EPSCs show rapid acceleration during development, so that decay kinetics converge to similar sub-millisecond time-constants (τ, 0.87 ± 0.11 and 0.77 ± 0.08 ms, respectively) in adult mice. This correlated with LSO mRNA levels for glycinergic and glutamatergic ionotropic receptor subunits, confirming a switch from Glyα2 to Glyα1 for IPSCs and increased expression of GluA3 and GluA4 subunits for EPSCs. The NMDA receptor (NMDAR)-EPSC decay τ accelerated from >40 ms in prehearing animals to 2.6 ± 0.4 ms in adults, as GluN2C expression increased. In vivo induction of AT at around P20 disrupted IPSC and EPSC integration in the LSO, so that 1 week later the AMPA receptor (AMPAR)-EPSC decay was slowed and mRNA for GluA1 increased while GluA4 decreased. In contrast, GlyR IPSC and NMDAR-EPSC decay times were unchanged. Computational modelling confirmed that matched IPSC and EPSC kinetics are required to generate mature interaural level difference functions, and that longer-lasting EPSCs compensate to maintain binaural function with raised auditory thresholds after AT. We conclude that LSO excitatory and inhibitory synaptic drive matures to identical time-courses, that AT changes synaptic AMPARs by expression of subunits with slow kinetics (which recover over 2 months) and that loud sounds reversibly modify excitatory synapses in the brain, changing synaptic function for several weeks after exposure
    • …
    corecore