2,094 research outputs found
How violent video games communicate violence: A literature review and content analysis of moral disengagement factors
Mechanisms of moral disengagement in violent video game play have recently received considerable attention among communication scholars. To date, however, no study has analyzed the prevalence of moral disengagement factors in violent video games. To fill this research gap, the present approach includes both a systematic literature review and a content analysis of moral disengagement cues embedded in the narratives and actual game play of 17 top-ranked first-person shooters (PC). Findings suggest that moral disengagement factors are frequently embedded in first-person shooters, but their prevalence varies considerably. Most violent video games include justifications of the portrayed violence, a distorted portrayal of consequences, and dehumanization of opponents. Implications of the findings for research on violent games are discussed
Effects of Tunable Data Compression on Geophysical Products Retrieved from Surface Radar Observations with Applications to Spaceborne Meteorological Radars
This paper presents results and analyses of applying an international space data compression standard to weather radar measurements that can easily span 8 orders of magnitude and typically require a large storage capacity as well as significant bandwidth for transmission. By varying the degree of the data compression, we analyzed the non-linear response of models that relate measured radar reflectivity and/or Doppler spectra to the moments and properties of the particle size distribution characterizing clouds and precipitation. Preliminary results for the meteorologically important phenomena of clouds and light rain indicate that for a 0.5 dB calibration uncertainty, typical for the ground-based pulsed-Doppler 94 GHz (or 3.2 mm, W-band) weather radar used as a proxy for spaceborne radar in this study, a lossless compression ratio of only 1.2 is achievable. However, further analyses of the non-linear response of various models of rainfall rate, liquid water content and median volume diameter show that a lossy data compression ratio exceeding 15 is realizable. The exploratory analyses presented are relevant to future satellite missions, where the transmission bandwidth is premium and storage requirements of vast volumes of data, potentially problematic
Don't bleach chaotic data
A common first step in time series signal analysis involves digitally
filtering the data to remove linear correlations. The residual data is
spectrally white (it is ``bleached''), but in principle retains the nonlinear
structure of the original time series. It is well known that simple linear
autocorrelation can give rise to spurious results in algorithms for estimating
nonlinear invariants, such as fractal dimension and Lyapunov exponents. In
theory, bleached data avoids these pitfalls. But in practice, bleaching
obscures the underlying deterministic structure of a low-dimensional chaotic
process. This appears to be a property of the chaos itself, since nonchaotic
data are not similarly affected. The adverse effects of bleaching are
demonstrated in a series of numerical experiments on known chaotic data. Some
theoretical aspects are also discussed.Comment: 12 dense pages (82K) of ordinary LaTeX; uses macro psfig.tex for
inclusion of figures in text; figures are uufile'd into a single file of size
306K; the final dvips'd postscript file is about 1.3mb Replaced 9/30/93 to
incorporate final changes in the proofs and to make the LaTeX more portable;
the paper will appear in CHAOS 4 (Dec, 1993
Enhanced Pre-Monsoon Warming over the Himalayan-Gangetic Region from 1979-2007
Fundamental to the onset of the Indian Summer Monsoon is the land-sea thermal gradient from the Indian Ocean to the Himalayas-Tibetan Plateau (HTP). The timing of the onset is strongly controlled by the meridional tropospheric temperature gradient due to the rapid premonsoon heating of the HTP compared to the relatively cooler Indian Ocean. Analysis of tropospheric temperatures from the longest available record of microwave satellite measurements reveals widespread warming over the Himalayan-Gangetic region and consequent strengthening of the land-sea thermal gradient. This trend is most pronounced in the pre-monsoon season, resulting in a warming of 2.7 C in the 29-year record (1979–2007), when this region is strongly influenced by dust aerosols at elevated altitudes. The enhanced tropospheric warming is accompanied by increased atmospheric loading of absorbing aerosols, particularly vertically extended dust aerosols, raising the possibility that aerosol solar heating has amplified the seasonal warming and in turn strengthened the land-sea gradient
Inferring hidden states in Langevin dynamics on large networks: Average case performance
We present average performance results for dynamical inference problems in
large networks, where a set of nodes is hidden while the time trajectories of
the others are observed. Examples of this scenario can occur in signal
transduction and gene regulation networks. We focus on the linear stochastic
dynamics of continuous variables interacting via random Gaussian couplings of
generic symmetry. We analyze the inference error, given by the variance of the
posterior distribution over hidden paths, in the thermodynamic limit and as a
function of the system parameters and the ratio {\alpha} between the number of
hidden and observed nodes. By applying Kalman filter recursions we find that
the posterior dynamics is governed by an "effective" drift that incorporates
the effect of the observations. We present two approaches for characterizing
the posterior variance that allow us to tackle, respectively, equilibrium and
nonequilibrium dynamics. The first appeals to Random Matrix Theory and reveals
average spectral properties of the inference error and typical posterior
relaxation times, the second is based on dynamical functionals and yields the
inference error as the solution of an algebraic equation.Comment: 20 pages, 5 figure
AC-coupled GaAs microstrip detectors with a new type of integrated bias resistors
Full size single-sided GaAs microstrip detectors with integrated coupling
capacitors and bias resistors have been fabricated on 3'' substrate wafers.
PECVD deposited SiO_2 and SiO_2/Si_3N_4 layers were used to provide coupling
capacitaces of 32.5 pF/cm and 61.6 pF/cm, respectively. The resistors are made
of sputtered CERMET using simple lift of technique. The sheet resistivity of 78
kOhm/sq. and the thermal coefficient of resistance of less than 4x10^-3 /
degree C satisfy the demands of small area biasing resistors, working on a wide
temperature range.Comment: 20 pages, 9 figures, to be published in NIM
Micro-structure and Magnetization of the 80-K Superconductor, TbSr2Cu2.7Mo0.3O7+d
The results of micro-structural and detailed magnetization studies are
reported here for our recently published TbSr2Cu2.7Mo0.3O7+d superconductor
with a transition temperature (Tc) at as high as 80 K [1]. From XRD and EDX the
sample was confirmed to be of single-phase and possess the nominal cation
stoichiometry. The SEM images showed well-developed grains for this ceramic
high-Tc superconductor. Magnetization measurements at various temperatures and
fields revealed bulk superconductivity below 80 K. Magnetization versus applied
field (M vs. H) loops at various temperatures below the Tc exhibited clear full
penetration field HP. In normal state (> 100 K) the susceptibility follows the
Curie-Weiss behavior with an effective paramagnetic moment of 9.83 mB.Comment: 11 pages of text and figs. Accepted in Physica
Ribosomal protein synthesis is not regulated at the translational level in Saccharomyces cerevisiae: balanced accumulation of ribosomal proteins L16 and rp59 is mediated by turnover of excess protein.
We have investigated the mechanisms whereby equimolar quantities of ribosomal proteins accumulate and assemble into ribosomes of the yeast Saccharomyces cerevisiae. Extra copies of the cry1 or RPL16 genes encoding ribosomal proteins rp59 or L16 were introduced into yeast by transformation. Excess cry1 or RPL16 mRNA accumulated in polyribosomes in these cells and was translated at wild-type rates into rp59 or L16 proteins. These excess proteins were degraded until their levels reached those of other ribosomal proteins. Identical results were obtained when the transcription of RPL16A was rapidly induced using GAL1-RPL16A promoter fusions, including a construct in which the entire RPL16A 5\u27-noncoding region was replaced with the GAL1 leader sequence. Our results indicate that posttranscriptional expression of the cry1 and RPL16 genes is regulated by turnover of excess proteins rather than autogenous regulation of mRNA splicing or translation. The turnover of excess rp59 or L16 is not affected directly by mutations that inactivate vacuolar hydrolases
Tree ensemble kernels for Bayesian optimization with known constraints over mixed-feature spaces
Tree ensembles can be well-suited for black-box optimization tasks such as
algorithm tuning and neural architecture search, as they achieve good
predictive performance with little or no manual tuning, naturally handle
discrete feature spaces, and are relatively insensitive to outliers in the
training data. Two well-known challenges in using tree ensembles for black-box
optimization are (i) effectively quantifying model uncertainty for exploration
and (ii) optimizing over the piece-wise constant acquisition function. To
address both points simultaneously, we propose using the kernel interpretation
of tree ensembles as a Gaussian Process prior to obtain model variance
estimates, and we develop a compatible optimization formulation for the
acquisition function. The latter further allows us to seamlessly integrate
known constraints to improve sampling efficiency by considering
domain-knowledge in engineering settings and modeling search space symmetries,
e.g., hierarchical relationships in neural architecture search. Our framework
performs as well as state-of-the-art methods for unconstrained black-box
optimization over continuous/discrete features and outperforms competing
methods for problems combining mixed-variable feature spaces and known input
constraints.Comment: 27 pages, 9 figures, 4 table
A Novel Non-Intrusive Method to Resolve the Thermal-Dome-Effect of Pyranometers: Radiometric Calibration and Implications
Traditionally the calibration equation for pyranometers assumes that the measured solar irradiance is solely proportional to the thermopile's output voltage; therefore only a single calibration factor is derived. This causes additional measurement uncertainties because it does not capture sufficient information to correctly account for a pyranometer's thermal effect. In our updated calibration equation, temperatures from the pyranometer's dome and case are incorporated to describe the instrument's thermal behavior, and a new set of calibration constants are determined, thereby reducing measurement uncertainties. In this paper, we demonstrate why a pyranometer's uncertainty using the traditional calibration equation is always larger than a-few-percent, but with the new approach can become much less than 1% after the thermal issue is resolved. The highlighted calibration results are based on NIST-traceable light sources under controlled laboratory conditions. The significance of the new approach lends itself to not only avoiding the uncertainty caused by a pyranometer's thermal effect but also the opportunity to better isolate and characterize other instrumental artifacts, such as angular response and non-linearity of the thermopile, to further reduce additional uncertainties. We also discuss some of the implications, including an example of how the thermal issue can potentially impact climate studies by evaluating aerosol's direct-radiative effect using field measurements with and without considering the pyranometer's thermal effect. The results of radiative transfer model simulation show that a pyranometer's thermal effect on solar irradiance measurements at the surface can be translated into a significant alteration of the calculated distribution of solar energy inside the column atmosphere
- …