123 research outputs found
Hraban Maur, on honouring parents. 834
This work was written in 834 by Hraban Maur (or Hrabanus Maurus, or Rabanus Maurus, c. 780–856), at this point abbot of the monastery of Fulda, and addressed to Emperor Louis the Pious. Its conventional title ‘On honouring parents’ suggests that it is a treatise on the obedience that children owe to their parents. However, this title was provided by its modern editor, based on the heading of the first chapter, and the treatise’s remit in truth is both wider and narrower: wider, in that it encompasses topics such as forgiveness and judgement as well as filial obedience; and narrower, because it was written for a specific political purpose. We provide here a full English translation to make the work more accessible, together with an introduction for those unfamiliar with the context and period in which it was written
The helminth product, ES-62, protects against airway inflammation by resetting the Th cell phenotype
We previously demonstrated inhibition of ovalbumin (OVA)-induced allergic airway hyper-responsiveness in the mouse using ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode, Acanthocheilonema viteae. This inhibition correlated with ES-62-induced mast cell desensitisation, although the degree to which this reflected direct targeting of mast cells remained unclear as suppression of the Th2 phenotype of the inflammatory response, as measured by eosinophilia and IL-4 levels in the lungs, was also observed. We now show that inhibition of the lung Th2 phenotype is reflected in ex vivo analyses of draining lymph node recall cultures and accompanied by a decrease in the serum levels of total and OVA-specific IgE. Moreover, ES-62 also suppresses the lung infiltration by neutrophils that is associated with severe asthma and is generally refractory to conventional anti-inflammatory therapies, including steroids. Protection against Th2-associated airway inflammation does not reflect induction of regulatory T cell (Treg) responses (there is no increased IL-10 or Foxp3 expression) but rather a switch in polarisation towards increased T-bet expression and IFNγ production. This ES-62-driven switch in the Th1/Th2 balance is accompanied by decreased IL-17 responses, a finding in line with reports that IFNγ and IL-17 are counter-regulatory. Consistent with ES-62 mediating its effects via IFNγ-mediated suppression of pathogenic Th2/Th17 responses, we found that neutralising anti-IFNγ antibodies blocked protection against airway inflammation in terms of pro-inflammatory cell infiltration, particularly by neutrophils and lung pathology. Collectively, these studies indicate that ES-62, or more likely small molecule analogues, could have therapeutic potential in asthma, in particular for those subtypes of patients (e.g. smokers, steroid-resistant) who are refractory to current treatments
Telomere length and survival in primary cutaneous melanoma patients
Dermatology-oncolog
Pharmacological antagonism of interleukin-8 receptor CXCR2 inhibits inflammatory reactivity and is neuroprotective in an animal model of Alzheimer’s disease
BACKGROUND: The chemokine interleukin-8 (IL-8) and its receptor CXCR2 contribute to chemotactic responses in Alzheimer’s disease (AD); however, properties of the ligand and receptor have not been characterized in animal models of disease. The primary aim of our study was to examine effects of pharmacological antagonism of CXCR2 as a strategy to inhibit receptor-mediated inflammatory reactivity and enhance neuronal viability in animals receiving intrahippocampal injection of amyloid-beta (Aβ(1–42)). METHODS: In vivo studies used an animal model of Alzheimer’s disease incorporating injection of full-length Aβ(1–42) into rat hippocampus. Immunohistochemical staining of rat brain was used to measure microgliosis, astrogliosis, neuronal viability, and oxidative stress. Western blot and Reverse Transcription PCR (RT-PCR) were used to determine levels of CXCR2 in animal tissue with the latter also used to determine expression of pro-inflammatory mediators. Immunostaining of human AD and non-demented (ND) tissue was also undertaken. RESULTS: We initially determined that in the human brain, AD relative to ND tissue exhibited marked increases in expression of CXCR2 with cell-specific receptor expression prominent in microglia. In Aβ(1–42)-injected rat brain, CXCR2 and IL-8 showed time-dependent increases in expression, concomitant with enhanced gliosis, relative to controls phosphate-buffered saline (PBS) or reverse peptide Aβ(42–1) injection. Administration of the competitive CXCR2 antagonist SB332235 to peptide-injected rats significantly reduced expression of CXCR2 and microgliosis, with astrogliosis unchanged. Double staining studies demonstrated localization of CXCR2 and microglial immunoreactivity nearby deposits of Aβ(1–42) with SB332235 effective in inhibiting receptor expression and microgliosis. The numbers of neurons in granule cell layer (GCL) were reduced in rats receiving Aβ(1–42), compared with PBS, with administration of SB332235 to peptide-injected animals conferring neuroprotection. Oxidative stress was indicated in the animal model since both 4-hydroxynonenal (4-HNE) and hydroethidine (HEt) were markedly elevated in Aβ(1–42) vs PBS-injected rat brain and diminished with SB332235 treatment. CONCLUSION: Overall, the findings suggest critical roles for CXCR2-dependent inflammatory responses in an AD animal model with pharmacological modulation of the receptor effective in inhibiting inflammatory reactivity and conferring neuroprotection against oxidative damage
- …