57 research outputs found
Multiparameter Telemetry as a Sensitive Screening Method to Detect Vaccine Reactogenicity in Mice
Refined vaccines and adjuvants are urgently needed to advance immunization against global infectious challenges such as HIV, hepatitis C, tuberculosis and malaria. Large-scale screening efforts are ongoing to identify adjuvants with improved efficacy profiles. Reactogenicity often represents a major hurdle to the clinical use of new substances. Yet, irrespective of its importance, this parameter has remained difficult to screen for, owing to a lack of sensitive small animal models with a capacity for high throughput testing. Here we report that continuous telemetric measurements of heart rate, heart rate variability, body core temperature and locomotor activity in laboratory mice readily unmasked systemic side-effects of vaccination, which went undetected by conventional observational assessment and clinical scoring. Even minor aberrations in homeostasis were readily detected, ranging from sympathetic activation over transient pyrogenic effects to reduced physical activity and apathy. Results in real-time combined with the potential of scalability and partial automation in the industrial context suggest multiparameter telemetry in laboratory mice as a first-line screen for vaccine reactogenicity. This may accelerate vaccine discovery in general and may further the success of vaccines in combating infectious disease and cancer
Smart Moves: Effects of Relative Brain Size on Establishment Success of Invasive Amphibians and Reptiles
Brain size relative to body size varies considerably among animals, but the
ecological consequences of that variation remain poorly understood. Plausibly,
larger brains confer increased behavioural flexibility, and an ability to
respond to novel challenges. In keeping with that hypothesis, successful
invasive species of birds and mammals that flourish after translocation to a new
area tend to have larger brains than do unsuccessful invaders. We found the same
pattern in ectothermic terrestrial vertebrates. Brain size relative to body size
was larger in species of amphibians and reptiles reported to be successful
invaders, compared to species that failed to thrive after translocation to new
sites. This pattern was found in six of seven global biogeographic realms; the
exception (where relatively larger brains did not facilitate invasion success)
was Australasia. Establishment success was also higher in amphibian and reptile
families with larger relative brain sizes. Future work could usefully explore
whether invasion success is differentially associated with enlargement of
specific parts of the brain (as predicted by the functional role of the
forebrain in promoting behavioural flexibility), or with a general size increase
(suggesting that invasion success is facilitated by enhanced perceptual and
motor skills, as well as cognitive ability)
Energy autonomous wearable sensors for smart healthcare: a review
Energy Autonomous Wearable Sensors (EAWS) have attracted a large interest due to their potential to provide reliable measurements and continuous bioelectric signals, which help to reduce health risk factors early on, ongoing assessment for disease prevention, and maintaining optimum, lifelong health quality. This review paper presents recent developments and state-of-the-art research related to three critical elements that enable an EAWS. The first element is wearable sensors, which monitor human body physiological signals and activities. Emphasis is given on explaining different types of transduction mechanisms presented, and emerging materials and fabrication techniques. The second element is the flexible and wearable energy storage device to drive low-power electronics and the software needed for automatic detection of unstable physiological parameters. The third is the flexible and stretchable energy harvesting module to recharge batteries for continuous operation of wearable sensors. We conclude by discussing some of the technical challenges in realizing energy-autonomous wearable sensing technologies and possible solutions for overcoming them
Une espèce nouvelle de Gecko Eublepharis ensafi (Sauria, Gekkonidae, Eublepharinae) du Khouzistan (sud-ouest de l'Iran)
Eublepharis ensafi nov. sp. is named on the basis of one specimen from Fakke, a locality about 150 km to north of Ahvaz (Iran). This specimen is probably the largest gecko known today. In various morphological characteristic, E. ensafi clearly differ of the other species known in Iran : E. macularius and E. angramainyu.Un gecko provenant de Fakké, localité à environ 150 km au Nord d'Ahvaz (Iran), permet la description de la nouvelle espèce : Eublepharis ensafi. Cet individu est vraisemblablement le plus grand gecko connu à ce jour. Plusieurs caractères morphologiques permettent de distinguer E. ensafi des autres espèces recensées en Iran : E. macularius et E. angramainyu.Baloutch M., Thireau Michel. Une espèce nouvelle de Gecko Eublepharis ensafi (Sauria, Gekkonidae, Eublepharinae) du Khouzistan (sud-ouest de l'Iran). In: Bulletin mensuel de la Société linnéenne de Lyon, 55ᵉ année, n°8, octobre 1986. pp. 281-288
- …