55 research outputs found

    Lensing of gravitational waves: efficient wave-optics methods and validation with symmetric lenses

    Get PDF
    Gravitational wave (GW) astronomy offers the potential to probe the wave-optics regime of gravitational lensing. Wave optics (WO) effects are relevant at low frequencies, when the wavelength is comparable to the characteristic lensing time delay multiplied by the speed of light, and are thus often negligible for electromagnetic signals. Accurate predictions require computing the conditionally convergent diffraction integral, which involves highly oscillatory integrands and is numerically difficult. We develop and implement several methods to compute lensing predictions in the WO regime valid for general gravitational lenses. First, we derive approximations for high and low frequencies, obtaining explicit expressions for several analytic lens models. Next, we discuss two numerical methods suitable in the intermediate frequency range: 1) Regularized contour flow yields accurate answers in a fraction of a second for a broad range of frequencies. 2) Complex deformation is slower, but requires no knowledge of solutions to the geometric lens equation. Both methods are independent and complement each other. We verify sub-percent accuracy for several lens models, which should be sufficient for applications to GW astronomy in the near future. Apart from modelling lensed GWs, our method will also be applicable to the study of plasma lensing of radio waves and tests of gravity

    Coupled charge and spin dynamics in high-density ensembles of nitrogen-vacancy centers in diamond

    Get PDF
    We studied the spin depolarization of ensembles of nitrogen-vacancy (NV) centers in nitrogen-rich single crystal diamonds. We found a strong dependence of the evolution of the polarized state in the dark on the concentration of NV centers. At low excitation power, we observed a simple exponential decay profile in the low-density regime and a paradoxical inverted exponential profile in the high-density regime. At higher excitation power, we observed complex behavior, with an initial sharp rise in luminescence signal after the preparation pulse followed by a slower exponential decay. Magnetic field and excitation laser power-dependent measurements suggest that the rapid initial increase of the luminescence signal is related to recharging of the nitrogen-vacancy centers (from neutral to negatively charged) in the dark. The slow relaxing component corresponds to the longitudinal spin relaxation of the NV ensemble. The shape of the decay profile reflects the interplay between two mechanisms: the NV charge state conversion in the dark and the longitudinal spin relaxation. These mechanisms, in turn, are influenced by ionization, recharging and polarization dynamics during excitation. Interestingly, we found that charge dynamics are dominant in NV-dense samples even at very feeble excitation power. These observations may be important for the use of ensembles of NV centers in precession magnetometry and sensing applications.Comment: 7 pages, 6 figure

    Anterior insula stimulation suppresses appetitive behavior while inducing forebrain activation in alcohol-preferring rats

    Get PDF
    The anterior insular cortex plays a key role in the representation of interoceptive effects of drug and natural rewards and their integration with attention, executive function, and emotions, making it a potential target region for intervention to control appetitive behaviors. Here, we investigated the effects of chemogenetic stimulation or inhibition of the anterior insula on alcohol and sucrose consumption. Excitatory or inhibitory designer receptors (DREADDs) were expressed in the anterior insula of alcohol-preferring rats by means of adenovirus-mediated gene transfer. Rats had access to either alcohol or sucrose solution during intermittent sessions. To characterize the brain network recruited by chemogenetic insula stimulation we measured brain-wide activation patterns using pharmacological magnetic resonance imaging (phMRI) and c-Fos immunohistochemistry. Anterior insula stimulation by the excitatory Gq-DREADDs significantly attenuated both alcohol and sucrose consumption, whereas the inhibitory Gi-DREADDs had no effects. In contrast, anterior insula stimulation failed to alter locomotor activity or deprivation-induced water drinking. phMRI and c-Fos immunohistochemistry revealed downstream activation of the posterior insula and medial prefrontal cortex, as well as of the mediodorsal thalamus and amygdala. Our results show the critical role of the anterior insula in regulating reward-directed behavior and delineate an insula-centered functional network associated with the effects of insula stimulation. From a translational perspective, our data demonstrate the therapeutic potential of circuit-based interventions and suggest that potentiation of insula excitability with neuromodulatory methods, such as repetitive transcranial magnetic stimulation (rTMS), could be useful in the treatment of alcohol use disorders.Peer reviewe

    Hyperthermic superparamagnetic nanoparticles modulate adipocyte metabolism

    Get PDF
    Adipocytes are the principal cellular component in adipose tissue and their excessive hyperplasia or hypertrophy is actively involved in regulating physiologic and pathologic processes such as inflammation, cardiovascular disease, obesity and tumour. The main depot of energy in adipocytes is represented by lipid droplets, intracellular organelles that play fundamental roles in regulation of metabolic processes. An accumulation of such droplets could be a potential biomarker of disease caused by metabolic dysregulation. Recent studies have demonstrated that heat shock is associated with alteration in energy metabolism: the aim of this study is to modulate the energy metabolism of the adipocytes via controlled administration of thermal energy to reduce the number of lipid droplets. We have investigated the effect of controlled heating of adipocytes using an alternating magnetic field (AMF) on samples loaded with superparamagnetic nanoparticles (MNP) as heating agent

    Resonant decay of gravitational waves into dark energy

    Get PDF
    We study the decay of gravitational waves into dark energy fluctuations \u3c0, taking into account the large occupation numbers. We describe dark energy using the effective field theory approach, in the context of generalized scalar-tensor theories. When the m33 (cubic Horndeski) and 3c m42 (beyond Horndeski) operators are present, the gravitational wave acts as a classical background for \u3c0 and modifies its dynamics. In particular, \u3c0 fluctuations are described by a Mathieu equation and feature instability bands that grow exponentially. Focusing on the regime of small gravitational-wave amplitude, corresponding to narrow resonance, we calculate analytically the produced \u3c0, its energy and the change of the gravitational-wave signal. The resonance is affected by \u3c0 self-interactions in a way that we cannot describe analytically. This effect is very relevant for the operator m33 and it limits the instability. In the case of the 3c m42 operator self-interactions can be neglected, at least in some regimes. The modification of the gravitational-wave signal is observable for 3 7 10-20 64 \u3b1H 64 10-17 with a LIGO/Virgo-like interferometer and for 10-16 64 \u3b1H 64 10-10 with a LISA-like one

    Plantar calcaneal spurs in older people: longitudinal traction or vertical compression?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plantar calcaneal spurs are common, however their pathophysiology is poorly understood. This study aimed to evaluate the prevalence and correlates of plantar calcaneal spurs in a large sample of older people.</p> <p>Methods</p> <p>Weightbearing lateral foot radiographs of 216 people (140 women and 76 men) aged 62 to 94 years (mean age 75.9, <smcaps>SD</smcaps> 6.6) were examined for plantar calcaneal and Achilles tendon spurs. Associations between the presence of spurs and sex, body mass index, radiographic measures of foot posture, self-reported co-morbidities and current or previous heel pain were then explored.</p> <p>Results</p> <p>Of the 216 participants, 119 (55%) had at least one plantar calcaneal spur and 103 (48%) had at least one Achilles tendon spur. Those with plantar calcaneal spurs were more likely to have Achilles tendon spurs (odds ratio [OR] = 2.0, 95% confidence interval [CI] 1.2 to 3.5). Prevalence of spurs did not differ according to sex. Participants with plantar calcaneal spurs were more likely to be obese (OR = 7.9, 95% CI 3.6 to 17.0), report osteoarthritis (OR = 2.6, 95% CI 1.6 to 4.8) and have current or previous heel pain (OR = 4.6, 95% CI 2.3 to 9.4). No relationship was found between the presence of calcaneal spurs and radiographic measures of foot posture.</p> <p>Conclusion</p> <p>Calcaneal spurs are common in older men and women and are related to obesity, osteoarthritis and current or previous heel pain, but are unrelated to radiographic measurements of foot posture. These findings support the theory that plantar calcaneal spurs may be an adaptive response to vertical compression of the heel rather than longitudinal traction at the calcaneal enthesis.</p

    Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT 899 and their roles in the early stages of molecular signaling and host-legume nodulation

    Get PDF
    BACKGROUND: Nodulation and symbiotic nitrogen fixation are mediated by several genes, both of the host legume and of the bacterium. The rhizobial regulatory nodD gene plays a critical role, orchestrating the transcription of the other nodulation genes. Rhizobium tropici strain CIAT 899 is an effective symbiont of several legumes—with an emphasis on common bean (Phaseolus vulgaris)—and is unusual in carrying multiple copies of nodD, the roles of which remain to be elucidated. RESULTS: Phenotypes, Nod factors and gene expression of nodD1 and nodD2 mutants of CIAT 899 were compared with those of the wild type strain, both in the presence and in the absence of the nod-gene-inducing molecules apigenin and salt (NaCl). Differences between the wild type and mutants were observed in swimming motility and IAA (indole acetic acid) synthesis. In the presence of both apigenin and salt, large numbers of Nod factors were detected in CIAT 899, with fewer detected in the mutants. nodC expression was lower in both mutants; differences in nodD1 and nodD2 expression were observed between the wild type and the mutants, with variation according to the inducing molecule, and with a major role of apigenin with nodD1 and of salt with nodD2. In the nodD1 mutant, nodulation was markedly reduced in common bean and abolished in leucaena (Leucaena leucocephala) and siratro (Macroptilium atropurpureum), whereas a mutation in nodD2 reduced nodulation in common bean, but not in the other two legumes. CONCLUSION: Our proposed model considers that full nodulation of common bean by R. tropici requires both nodD1 and nodD2, whereas, in other legume species that might represent the original host, nodD1 plays the major role. In general, nodD2 is an activator of nod-gene transcription, but, in specific conditions, it can slightly repress nodD1. nodD1 and nodD2 play other roles beyond nodulation, such as swimming motility and IAA synthesis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1458-8) contains supplementary material, which is available to authorized users
    corecore