251 research outputs found

    Addressing food security, WASH and climate vulnerability: the WaterAid-CARE partnership in Timor-Leste

    Get PDF
    The small tropical country of Timor-Leste is in a period of social, political and environmental change. Its predominantly rural population is coping with aberrations in historical rainfall patterns and seasonal cycles, affecting communities’ ability to manage food and water security throughout the year. In 2012 CARE and WaterAid successfully applied for funding under the Australian Government’s Community Based Climate Change Action Grant. The objective of the joint project is to increase the adaptive capacity of women and men in vulnerable households living in Liquiça District with the goal of increasing resilience to the unavoidable impacts of climate change. The partnership has generated many interesting lessons, particularly around taking a catchment scale view and an integrated approach to managing water and food security. This paper will highlight selected lessons from the partnership, including addressing competing demands for water and mitigating conflict between its productive and domestic uses

    Relationship Between Neck Circumference and Cardiometabolic Parameters in HIV-Infected and non–HIV-Infected Adults

    Get PDF
    OBJECTIVE: Upper body fat is associated with increased cardiometabolic risk. More recently, neck circumference (NC) and/or neck fat have been associated with hyperlipidemia, impaired glucose homeostasis, and hypertension. The objective of this study was to determine whether this relationship is evident in HIV-infected individuals, who often exhibit changes in relative fat distribution, and to determine whether NC is independently associated with carotid intima-media thickness (cIMT) in HIV and non–HIV-infected patients. RESEARCH DESIGN AND METHODS: Body composition, including anthropometrics, visceral adipose tissue assessment by CT, and metabolic parameters, including lipids, cIMT, and oral glucose tolerance test, were measured in 174 men and women with HIV infection and 154 non–HIV-infected subjects. NC was measured in triplicate inferior to the laryngeal prominence. RESULTS: In univariate analysis, NC was significantly and positively related to blood pressure, hemoglobin A1c, glucose, and insulin and significantly and negatively related to HDL cholesterol in HIV-infected individuals and HIV-negative control subjects. NC was significantly associated with cIMT in univariate regression analysis among HIV-infected (r = 0.21, P = 0.006) and non–HIV-infected (r = 0.31, P = 0.0001) patients. This relationship remained significant among non–HIV-infected patients (R2 = 0.45, P < 0.001) but not HIV-infected patients in multivariate modeling controlling for age, sex, race, smoking hypertension, glucose, and lipids. CONCLUSIONS: Among both HIV and non–HIV-infected patients, increased NC is strongly associated with decreased HDL and impaired glucose homeostasis. Among non–HIV-infected subjects, NC also predicts increased cIMT when controlling for traditional risk factors

    Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean

    Get PDF
    This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme typhoon events provides more realistic coastal SSS and may allow a different scenario analysis with various precipitation inputs for developing a nowcasting analysis in the future

    The ORC/Cdc6/MCM2-7 complex facilitates MCM2-7 dimerization during prereplicative complex formation.

    No full text
    The replicative mini-chromosome-maintenance 2-7 (MCM2-7) helicase is loaded in Saccharomyces cerevisiae and other eukaryotes as a head-to-head double-hexamer around origin DNA. At first, ORC/Cdc6 recruits with the help of Cdt1 a single MCM2-7 hexamer to form an 'initial' ORC/Cdc6/Cdt1/MCM2-7 complex. Then, on ATP hydrolysis and Cdt1 release, the 'initial' complex is transformed into an ORC/Cdc6/MCM2-7 (OCM) complex. However, it remains unclear how the OCM is subsequently converted into a MCM2-7 double-hexamer. Through analysis of MCM2-7 hexamer-interface mutants we discovered a complex competent for MCM2-7 dimerization. We demonstrate that these MCM2-7 mutants arrest during prereplicative complex (pre-RC) assembly after OCM formation, but before MCM2-7 double-hexamer assembly. Remarkably, only the OCM complex, but not the 'initial' ORC/Cdc6/Cdt1/MCM2-7 complex, is competent for MCM2-7 dimerization. The MCM2-7 dimer, in contrast to the MCM2-7 double-hexamer, interacts with ORC/Cdc6 and is salt-sensitive, classifying the arrested complex as a helicase-loading intermediate. Accordingly, we found that overexpression of the mutants cause cell-cycle arrest and dominant lethality. Our work identifies the OCM complex as competent for MCM2-7 dimerization, reveals MCM2-7 dimerization as a limiting step during pre-RC formation and defines critical mechanisms that explain how origins are licensed

    Frequency Analysis of Absolute Maximum Air Temperatures in Serbia

    Get PDF
    This paper describes the frequency analysis of absolute maximum air temperatures, using annual maximum series (AMS) in the period 1961–2010 from 40 climatological stations in Serbia with maximum likelihood estimation of distribution parameters. For the goodness of fit testing of General Extreme Value (GEV), Normal, Log-Normal, Pearson 3 (three parameters), and Log-Pearson 3 distribution, three different tests were used (Kolmogorov-Smirnov, Anderson-Darling, chi-square). Based on the results of these tests (best average rank of certain distribution), the appropriate distribution is selected. GEV distribution proved to be the most appropriate one in most cases. The probability of exceedance of absolute maximum air temperatures on 1%, 0.5%, 0.2%, and 0.1% levels are calculated. A spatial analysis of the observed and modeled values of absolute maximum air temperatures in Serbia is given. The absolute maximum air temperature of 44.9 °C was recorded at Smederevska Palanka station, and the lowest value of maximum air temperature 35.8 °C was recorded at Zlatibor station, one of the stations with the highest altitude. The modeled absolute maximum air temperatures are the highest at Zaječar station with 44.5 °C, 45.6 °C, 47.0 °C, and 48.0 °C and the lowest values are calculated for Sjenica station with 35.5 °C, 35.8 °C, 36.1 °C, and 36.2 °C for the return periods of 100, 200, 500, and 1000 years, respectively. Our findings indicate the possible occurrence of much higher absolute maximum air temperatures in the future than the ones recorded on almost all of the analyzed stations

    Frequency Analysis of Absolute Maximum Air Temperatures in Serbia

    Get PDF
    This paper describes the frequency analysis of absolute maximum air temperatures, using annual maximum series (AMS) in the period 1961–2010 from 40 climatological stations in Serbia with maximum likelihood estimation of distribution parameters. For the goodness of fit testing of General Extreme Value (GEV), Normal, Log-Normal, Pearson 3 (three parameters), and Log-Pearson 3 distribution, three different tests were used (Kolmogorov-Smirnov, Anderson-Darling, chi-square). Based on the results of these tests (best average rank of certain distribution), the appropriate distribution is selected. GEV distribution proved to be the most appropriate one in most cases. The probability of exceedance of absolute maximum air temperatures on 1%, 0.5%, 0.2%, and 0.1% levels are calculated. A spatial analysis of the observed and modeled values of absolute maximum air temperatures in Serbia is given. The absolute maximum air temperature of 44.9 °C was recorded at Smederevska Palanka station, and the lowest value of maximum air temperature 35.8 °C was recorded at Zlatibor station, one of the stations with the highest altitude. The modeled absolute maximum air temperatures are the highest at Zaječar station with 44.5 °C, 45.6 °C, 47.0 °C, and 48.0 °C and the lowest values are calculated for Sjenica station with 35.5 °C, 35.8 °C, 36.1 °C, and 36.2 °C for the return periods of 100, 200, 500, and 1000 years, respectively. Our findings indicate the possible occurrence of much higher absolute maximum air temperatures in the future than the ones recorded on almost all of the analyzed stations

    In the absence of ATPase activity, pre-RC formation is blocked prior to MCM2-7 hexamer dimerization

    Get PDF
    The origin recognition complex (ORC) of Saccharomyces cerevisiae binds origin DNA and cooperates with Cdc6 and Cdt1 to load the replicative helicase MCM2–7 onto DNA. Helicase loading involves two MCM2–7 hexamers that assemble into a double hexamer around double-stranded DNA. This reaction requires ORC and Cdc6 ATPase activity, but it is unknown how these proteins control MCM2–7 double hexamer formation. We demonstrate that mutations in Cdc6 sensor-2 and Walker A motifs, which are predicted to affect ATP binding, influence the ORC–Cdc6 interaction and MCM2–7 recruitment. In contrast, a Cdc6 sensor-1 mutant affects MCM2–7 loading and Cdt1 release, similar as a Cdc6 Walker B ATPase mutant. Moreover, we show that Orc1 ATP hydrolysis is not involved in helicase loading or in releasing ORC from loaded MCM2–7. To determine whether Cdc6 regulates MCM2–7 double hexamer formation, we analysed complex assembly. We discovered that inhibition of Cdc6 ATPase restricts MCM2–7 association with origin DNA to a single hexamer, while active Cdc6 ATPase promotes recruitment of two MCM2–7 hexamer to origin DNA. Our findings illustrate how conserved Cdc6 AAA+ motifs modulate MCM2–7 recruitment, show that ATPase activity is required for MCM2–7 hexamer dimerization and demonstrate that MCM2–7 hexamers are recruited to origins in a consecutive process

    12-core x 3-mode Dense Space Division Multiplexed Transmission over 40 km Employing Multi-carrier Signals with Parallel MIMO Equalization

    Get PDF
    We demonstrate dense SDM transmission of 20-WDM multi-carrier PDM-32QAM signals over a 40-km 12-core x 3-mode fiber with 247.9-b/s/Hz spectral efficiency. Parallel MIMO equalization enables 21-ns DMD compensation with 61 TDE taps per subcarrier

    A new portable monitor for measuring odorous compounds in oral, exhaled and nasal air

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The B/B Checker<sup>®</sup>, a new portable device for detecting odorous compounds in oral, exhaled, and nasal air, is now available. As a single unit, this device is capable of detecting several kinds of gases mixed with volatile sulfur compounds (VSC) in addition to other odorous gasses. The purpose of the present study was to evaluate the effectiveness of the B/B Checker<sup>® </sup>for detecting the malodor level of oral, exhaled, and nasal air.</p> <p>Methods</p> <p>A total of 30 healthy, non-smoking volunteers (16 males and 14 females) participated in this study. The malodor levels in oral, exhaled, and nasal air were measured using the B/B Checker<sup>® </sup>and by organoleptic test (OT) scores. The VSCs in each air were also measured by gas chromatography (GC). Associations among B/B Checker<sup>® </sup>measurements, OT scores and VSC levels were analyzed using Spearman correlation coefficients. In order to determine the appropriate B/B Checker<sup>® </sup>level for screening subjects with malodor, sensitivity and specificity were calculated using OT scores as an identifier for diagnosing oral malodor.</p> <p>Results</p> <p>In oral and nasal air, the total VSC levels measured by GC significantly correlated to that measured by the B/B Checker<sup>®</sup>. Significant correlation was observed between the results of OT scores and the B/B Checker<sup>® </sup>measurements in oral (r = 0.892, p < 0.001), exhaled (r = 0.748, p < 0.001) and nasal air (r = 0.534, p < 0.001). The correlation between the OT scores and VSC levels was significant only for oral air (r = 0.790, p < 0.001) and nasal air (r = 0.431, p = 0.002); not for exhaled air (r = 0.310, p = 0.096). When the screening level of the B/B Checker<sup>® </sup>was set to 50.0 for oral air, the sensitivity and specificity were 1.00 and 0.90, respectively. On the other hand, the screening level of the B/B Checker<sup>® </sup>was set to 60.0 for exhaled air, the sensitivity and specificity were 0.82 and 1.00, respectively.</p> <p>Conclusion</p> <p>The B/B Checker<sup>® </sup>is useful for objective evaluation of malodor in oral, exhaled and nasal air and for screening subjects with halitosis.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01139073">NCT01139073</a></p

    Quantitative Proteomic and Interaction Network Analysis of Cisplatin Resistance in HeLa Cells

    Get PDF
    Cisplatin along with other platinum based drugs are some of the most widely used chemotherapeutic agents. However drug resistance is a major problem for the successful chemotherapeutic treatment of cancer. Current evidence suggests that drug resistance is a multifactorial problem due to changes in the expression levels and activity of a wide number of proteins. A majority of the studies to date have quantified mRNA levels between drug resistant and drug sensitive cell lines. Unfortunately mRNA levels do not always correlate with protein expression levels due to post-transcriptional changes in protein abundance. Therefore global quantitative proteomics screens are needed to identify the protein targets that are differentially expressed in drug resistant cell lines. Here we employ a quantitative proteomics technique using stable isotope labeling with amino acids in cell culture (SILAC) coupled with mass spectrometry to quantify changes in protein levels between cisplatin resistant (HeLa/CDDP) and sensitive HeLa cells in an unbiased fashion. A total of 856 proteins were identified and quantified, with 374 displaying significantly altered expression levels between the cell lines. Expression level data was then integrated with a network of protein-protein interactions, and biological pathways to obtain a systems level view of proteome changes which occur with cisplatin resistance. Several of these proteins have been previously implicated in resistance towards platinum-based and other drugs, while many represent new potential markers or therapeutic targets
    corecore