12,275 research outputs found
Optimal evaluation of single-molecule force spectroscopy experiments
The forced rupture of single chemical bonds under external load is addressed.
A general framework is put forward to optimally utilize the experimentally
observed rupture force data for estimating the parameters of a theoretical
model. As an application we explore to what extent a distinction between
several recently proposed models is feasible on the basis of realistic
experimental data sets.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.
Large System Analysis of Linear Precoding in Correlated MISO Broadcast Channels under Limited Feedback
In this paper, we study the sum rate performance of zero-forcing (ZF) and
regularized ZF (RZF) precoding in large MISO broadcast systems under the
assumptions of imperfect channel state information at the transmitter and
per-user channel transmit correlation. Our analysis assumes that the number of
transmit antennas and the number of single-antenna users are large
while their ratio remains bounded. We derive deterministic approximations of
the empirical signal-to-interference plus noise ratio (SINR) at the receivers,
which are tight as . In the course of this derivation, the
per-user channel correlation model requires the development of a novel
deterministic equivalent of the empirical Stieltjes transform of large
dimensional random matrices with generalized variance profile. The
deterministic SINR approximations enable us to solve various practical
optimization problems. Under sum rate maximization, we derive (i) for RZF the
optimal regularization parameter, (ii) for ZF the optimal number of users,
(iii) for ZF and RZF the optimal power allocation scheme and (iv) the optimal
amount of feedback in large FDD/TDD multi-user systems. Numerical simulations
suggest that the deterministic approximations are accurate even for small
.Comment: submitted to IEEE Transactions on Information Theor
Inductively shunted transmon qubit with tunable transverse and longitudinal coupling
We present the design of an inductively shunted transmon qubit with
flux-tunable coupling to an embedded harmonic mode. This circuit construction
offers the possibility to flux-choose between pure transverse and pure
longitudinal coupling, that is coupling to the or degree
of freedom of the qubit. While transverse coupling is the coupling type that is
most commonly used for superconducting qubits, the inherently different
longitudinal coupling has some remarkable advantages both for readout and for
the scalability of a circuit. Being able to choose between both kinds of
coupling in the same circuit provides the flexibility to use one for coupling
to the next qubit and one for readout, or vice versa. We provide a detailed
analysis of the system's behavior using realistic parameters, along with a
proposal for the physical implementation of a prototype device.Comment: 14 pages, 14 figure
The transcription factors Egr2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells
This article is available open access under a Creative Commons license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Copyright @ 2012 Elsevier Inc.Lymphocytes provide optimal responses against pathogens with minimal inflammatory pathology. However, the intrinsic mechanisms regulating these responses are unknown. Here, we report that deletion of both transcription factors Egr2 and Egr3 in lymphocytes resulted in a lethal autoimmune syndrome with excessive serum proinflammatory cytokines but also impaired antigen receptor-induced proliferation of B and T cells. Egr2- and Egr3-defective B and T cells had hyperactive signal transducer and activator of transcription-1 (STAT1) and STAT3 while antigen receptor-induced activation of transcription factor AP-1 was severely impaired. We discovered that Egr2 and/or Egr3 directly induced expression of suppressor of cytokine signaling-1 (SOCS1) and SOCS3, inhibitors of STAT1 and STAT3, and also blocked the function of Batf, an AP-1 inhibitor, in B and T cells. Thus, Egr2 and Egr3 regulate B and T cell function in adaptive immune responses and homeostasis by promoting antigen receptor signaling and controlling inflammation.Arthritis Research U
Capillary Condensation, Freezing, and Melting in Silica Nanopores: A Sorption Isotherm and Scanning Calorimetry Study on Nitrogen in Mesoporous SBA-15
Condensation, melting and freezing of nitrogen in a powder of mesoporous
silica grains (SBA-15) has been studied by combined volumetric sorption
isotherm and scanning calorimetry measurements. Within the mean field model of
Saam and Cole for vapor condensation in cylindrical pores a liquid nitrogen
sorption isotherm is well described by a bimodal pore radius distribution. It
encompasses a narrow peak centered at 3.3 nm, typical of tubular mesopores, and
a significantly broader peak characteristic of micropores, located at 1 nm. The
material condensed in the micropores as well as the first two adsorbed
monolayers in the mesopores do not exhibit any caloric anomaly. The
solidification and melting transformation affects only the pore condensate
beyond approx. the second monolayer of the mesopores. Here, interfacial melting
leads to a single peak in the specific heat measurements. Homogeneous and
heterogeneous freezing along with a delayering transition for partial fillings
of the mesopores result in a caloric freezing anomaly similarly complex and
dependent on the thermal history as has been observed for argon in SBA-15. The
axial propagation of the crystallization in pore space is more effective in the
case of nitrogen than previously observed for argon, which we attribute to
differences in the crystalline textures of the pore solids.Comment: 10 pages, 7 figure
Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures
We report the discovery of superconductivity at high pressure in SrFe2As2 and
BaFe2As2. The superconducting transition temperatures are up to 27 K in
SrFe2As2 and 29 K in BaFe2As2, making these the highest pressure-induced
superconducting materials discovered thus far.Comment: Accepted in Journal of Physics: Condensed Matte
Kaluza-Klein Dark Matter: Direct Detection vis-a-vis LHC
We explore the phenomenology of Kaluza-Klein (KK) dark matter in very general
models with universal extra dimensions (UEDs), emphasizing the complementarity
between high-energy colliders and dark matter direct detection experiments. In
models with relatively small mass splittings between the dark matter candidate
and the rest of the (colored) spectrum, the collider sensitivity is diminished,
but direct detection rates are enhanced. UEDs provide a natural framework for
such mass degeneracies. We consider both 5-dimensional and 6-dimensional
non-minimal UED models, and discuss the detection prospects for various KK dark
matter candidates: the KK photon , the KK -boson , the KK
Higgs boson and the spinless KK photon . We combine collider
limits such as electroweak precision data and expected LHC reach, with
cosmological constraints from WMAP, and the sensitivity of current or planned
direct detection experiments. Allowing for general mass splittings, we show
that neither colliders, nor direct detection experiments by themselves can
explore all of the relevant KK dark matter parameter space. Nevertheless, they
probe different parameter space regions, and the combination of the two types
of constraints can be quite powerful. For example, in the case of in
5D UEDs the relevant parameter space will be almost completely covered by the
combined LHC and direct detection sensitivities expected in the near future.Comment: 52 pages, 29 figure
- …