74 research outputs found

    Biophysical insights into the antitumoral activity of crotalicidin against breast cancer model membranes

    Get PDF
    Bioactive peptides have emerged as promising therapeutic agents with antimicrobial, antifungal, antiparasitic, and, recently, antitumoral properties with a mechanism of action based on membrane destabilization and cell death, often involving a conformational change in the peptide. This biophysical study aims to provide preliminary insights into the membrane-level antitumoral mode of action of crotalicidin, a cationic host defense peptide from rattlesnake venom, toward breast cancer cell lines. The lipid composition of breast cancer cell lines was obtained after lipid extraction and quantification to prepare representative cell membrane models. Membrane–peptide interaction studies were performed using differential scanning calorimetry and Fourier-transform infrared spectroscopy. The outcome evidences the potential antitumoral activity and selectivity of crotalicidin toward breast cancer cell lines and suggests a mechanism initiated by the electrostatic interaction of the peptide with the lipid bilayer surface and posterior conformation change with membrane intercalation between the acyl chains in negatively charged lipid systems. This research provides valuable information that clears up the antitumoral mode of action of crotalicidin

    The dynamics of the non-heme iron in bacterial reaction centers from Rhodobacter sphaeroides

    Get PDF
    AbstractWe investigate the dynamical properties of the non-heme iron (NHFe) in His-tagged photosynthetic bacterial reaction centers (RCs) isolated from Rhodobacter (Rb.) sphaeroides. Mössbauer spectroscopy and nuclear inelastic scattering of synchrotron radiation (NIS) were applied to monitor the arrangement and flexibility of the NHFe binding site. In His-tagged RCs, NHFe was stabilized only in a high spin ferrous state. Its hyperfine parameters (IS=1.06±0.01mm/s and QS=2.12±0.01mm/s), and Debye temperature (θD0~167K) are comparable to those detected for the high spin state of NHFe in non-His-tagged RCs. For the first time, pure vibrational modes characteristic of NHFe in a high spin ferrous state are revealed. The vibrational density of states (DOS) shows some maxima between 22 and 33meV, 33 and 42meV, and 53 and 60meV and a very sharp one at 44.5meV. In addition, we observe a large contribution of vibrational modes at low energies. This iron atom is directly connected to the protein matrix via all its ligands, and it is therefore extremely sensitive to the collective motions of the RC protein core. A comparison of the DOS spectra of His-tagged and non-His-tagged RCs from Rb. sphaeroides shows that in the latter case the spectrum was overlapped by the vibrations of the heme iron of residual cytochrome c2, and a low spin state of NHFe in addition to its high spin one. This enabled us to pin-point vibrations characteristic for the low spin state of NHFe

    Prospective Observational Study on acute Appendicitis Worldwide (POSAW)

    Get PDF
    Background: Acute appendicitis (AA) is the most common surgical disease, and appendectomy is the treatment of choice in the majority of cases. A correct diagnosis is key for decreasing the negative appendectomy rate. The management can become difficult in case of complicated appendicitis. The aim of this study is to describe the worldwide clinical and diagnostic work-up and management of AA in surgical departments.Methods: This prospective multicenter observational study was performed in 116 worldwide surgical departments from 44 countries over a 6-month period (April 1, 2016-September 30, 2016). All consecutive patients admitted to surgical departments with a clinical diagnosis of AA were included in the study.Results: A total of 4282 patients were enrolled in the POSAW study, 1928 (45%) women and 2354 (55%) men, with a median age of 29 years. Nine hundred and seven (21.2%) patients underwent an abdominal CT scan, 1856 (43.3%) patients an US, and 285 (6.7%) patients both CT scan and US. A total of 4097 (95.7%) patients underwent surgery; 1809 (42.2%) underwent open appendectomy and 2215 (51.7%) had laparoscopic appendectomy. One hundred eighty-five (4.3%) patients were managed conservatively. Major complications occurred in 199 patients (4.6%). The overall mortality rate was 0.28%.Conclusions: The results of the present study confirm the clinical value of imaging techniques and prognostic scores. Appendectomy remains the most effective treatment of acute appendicitis. Mortality rate is low.</p

    Prospective Observational Study on acute Appendicitis Worldwide (POSAW)

    Get PDF
    Acute appendicitis (AA) is the most common surgical disease, and appendectomy is the treatment of choice in the majority of cases. A correct diagnosis is key for decreasing the negative appendectomy rate. The management can become difficult in case of complicated appendicitis. The aim of this study is to describe the worldwide clinical and diagnostic work-up and management of AA in surgical departments.info:eu-repo/semantics/publishedVersio

    Microstructure characterization of noble metal-silica nanocomposites

    No full text
    The presence of highly dispersed metal particles on solid supports with well-defined microstructure is important in the field of functional materials, active catalysts as well as bionanomaterials for medical applications. Noble metal nanostructures, in particular silver, palladium, and platinum nanoparticles were formed from ammine complexes ([Pt(NH₃)₄]Cl₂, [Ag(NH₃)₂]OH, and [Pd(NH₃)₄]Cl₂) and supported on high ordered mesoporous silica (SBA-15) and aluminosilica matrix. In this work, the distribution, composition and crystal structure of supported noble metal nanoparticles were determined and characterized. Finally the stability of incorporated nanostructures was confirmed. The microstructures of the obtained samples were analyzed by high resolution transmission electron microscopy. Obtained results indicated that developed procedures of synthesis and modification of mesoporous ordered silica or their derivate by proposed nanostructures are effective and allow to obtain new nanocomposites and nanocatalysts in repeatable and controlled way

    Nowoczesne metody odsiarczania stosowane w urządzeniach termicznej utylizacji odpadów

    No full text
    Decreasing the amount of sulfur dioxide emissions is one of the most critical concerns of environmental protection. These substances have huge influence on natural environment as well as on human health. The authors included information about the absorbtion process that takes place in absorbers. Also, the various types of absorbers are presented, along with applications and a short description. There are presented installations placed in Polish waste incineration plants.Nowoczesne metody odsiarczania stosowane w urządzeniach termicznej utylizacji odpadów Zmniejszenie emisji dwutlenku siarki jest obecnie jednym z najważniejszych zagadnień ochrony środowiska. Związki te mają istotny wpływ na środowisko naturalne, w tym zdrowie człowieka. W artykule przedstawiono suche i mokre metody odsiarczania, wraz z ich porównaniem. Zawarto również informacje na temat procesu absorpcji zachodzącego w absorberach. Przedstawiono rodzaje absorberów, ich zastosowanie oraz sposób ich doboru, a także instalacje znajdujące się w polskich spalarniach odpadów
    corecore