610 research outputs found

    Nonlinear ac susceptibility studies of high-TcT_c rings: Influence of the structuring method and determination of the flux creep exponent

    Full text link
    We have studied the influence of the patterning procedure on the critical current density of high-TcT_c YBa2_2Cu3_3O7−ή_{7-\delta} thin rings using the nonlinear ac susceptibility method. At no applied dc magnetic field we have found that laser ablation degrades strongly the critical current density whereas ion beam etching has only a weak influence on it. From the measurements at different frequencies and dc magnetic fields we analyzed the influence of flux creep and obtained the field dependence of the flux creep exponent. Our data reconfirm the recently observed scaling relation for the nonlinear susceptibility response of type-II superconductors.Comment: 10 pages, 12 figure

    Magnetization reversal and local switching fields of ferromagnetic Co/Pd microtubes with radial magnetization

    Get PDF
    Three-dimensional nanomagnetism is a rapidly growing field of research covering both noncollinear spin textures and curved magnetic geometries including microtubular structures. We spatially resolve the field-induced magnetization reversal of free-standing ferromagnetic microtubes utilizing multifrequency magnetic force microscopy (MFM). The microtubes are composed of Co/Pd multilayer films with perpendicular magnetic anisotropy that translates to an anisotropy with radial easy axis upon rolling-up. Simultaneously mapping the topography and the perpendicular magnetostatic force derivative, the relation between surface angle and local magnetization configuration is evaluated for a large number of locations with slopes exceeding 45 degrees. The angle-dependence of the switching field is concurrent with the Kondorsky model, i.e., the rolled-up nanomembrane behaves like a planar magnetic film with perpendicular anisotropy and a pinning dominated magnetization reversal. Additionally, we discuss methodological challenges when detecting magnetostatic force derivatives near steep surfaces

    Biophysically motivated efficient estimation of the spatially isotropic R*2 component from a single gradient‐recalled echo measurement

    Get PDF
    Purpose To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation‐dependent part of R*2 using a single gradient‐recalled echo (GRE) measurement. Methods The proposed method utilized a temporal second‐order approximation of the hollow‐cylinder‐fiber model, in which the parameter describing the linear signal decay corresponded to the orientation‐independent part of R*2. The estimated parameters were compared to the classical, mono‐exponential decay model for R*2 in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of R*2, it was compared to the established phenomenological method for separating R*2 into orientation‐dependent and ‐independent parts. Results Using the phenomenological method on the classical signal model, the well‐known separation of R*2 into orientation‐dependent and ‐independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed. Conclusions Since the proposed second‐order model features orientation‐dependent and ‐independent components at distinct temporal orders, it can be used to remove the orientation dependence of R*2 using only a single GRE measurement

    Oblikovanje i vrednovanje plutajućih uljnih mikrozrnaca loratadina s produljenim zadrĆŸavanjem u ĆŸelucu

    Get PDF
    Gastro retentive controlled release system of loratadine was formulated to increase the residence time in stomach and to modulate the release behaviour of the drug. Oil entrapped floating microbeads prepared by emulsion gelation method were optimized by 23 factorial design and a polymer ratio of 2.5:1.5 (pectin: sodium alginate) by mass, 15% (m/v) of oil (mineral oil or castor oil) and 0.45 mol L-1 calcium chloride solution were selected as the optimized processing conditions for the desired buoyancy and physical stability. In vitro drug release in fed state conditions demonstrated sustained release of loratadine for 8 h that best fitted the Peppas model with n < 0.45. The ethylcellulose coating on microbeads optimized by 22 factorial design resulted in controlled release formulation of loratadine that provided zero-order release for 8 h.U radu je opisana priprava plutajućih mikrozrnaca za kontrolirano oslobađanje loratadina metodom ĆŸeliranja emulzije. Mikrozrnca sadrĆŸe ulja, a njihovo zadrĆŸavanje u ĆŸelucu je produljeno. Priprava mikrozrnaca je optimirana 23 faktorijalnim dizajnom. Pripravci optimalne sposobnosti plutanja i stabilnosti dobiveni su uz omjer masa pektina i natrijevog alginata 2,5:1,5, udio mineralnog ulja ili ulja kastora 15% (m/v) i koncentraciju kalcijevog klorida 0,45 mol L1. Iz tih se mikrozrnaca loratadin oslobađa in vitro tijekom 8 h, a oslobađanje slijedi Peppasov model ako je n < 0,45. Mikrozrnca presvučena etilcelulozom optimirana 22 faktorijalnim dizajnom slijede kinetiku nultog reda tijekom 8 h

    Finding the best efficiency for laser machining of gold colloids

    Get PDF

    AnnoTALE : bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences

    Get PDF
    Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present 'AnnoTALE', a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities

    Mechanics of extended masses in general relativity

    Full text link
    The "external" or "bulk" motion of extended bodies is studied in general relativity. Compact material objects of essentially arbitrary shape, spin, internal composition, and velocity are allowed as long as there is no direct (non-gravitational) contact with other sources of stress-energy. Physically reasonable linear and angular momenta are proposed for such bodies and exact equations describing their evolution are derived. Changes in the momenta depend on a certain "effective metric" that is closely related to a non-perturbative generalization of the Detweiler-Whiting R-field originally introduced in the self-force literature. If the effective metric inside a self-gravitating body can be adequately approximated by an appropriate power series, the instantaneous gravitational force and torque exerted on it is shown to be identical to the force and torque exerted on an appropriate test body moving in the effective metric. This result holds to all multipole orders. The only instantaneous effect of a body's self-field is to finitely renormalize the "bare" multipole moments of its stress-energy tensor. The MiSaTaQuWa expression for the gravitational self-force is recovered as a simple application. A gravitational self-torque is obtained as well. Lastly, it is shown that the effective metric in which objects appear to move is approximately a solution to the vacuum Einstein equation if the physical metric is an approximate solution to Einstein's equation linearized about a vacuum background.Comment: 39 pages, 2 figures; fixed equation satisfied by the Green function used to construct the effective metri

    Biophysically motivated efficient estimation of the spatially isotropic R∗2 component from a single gradient-recalled echo measurement

    Get PDF
    Purpose To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation‐dependent part of R∗2 using a single gradient‐recalled echo (GRE) measurement. Methods The proposed method utilized a temporal second‐order approximation of the hollow‐cylinder‐fiber model, in which the parameter describing the linear signal decay corresponded to the orientation‐independent part of R∗2. The estimated parameters were compared to the classical, mono‐exponential decay model for R∗2 in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of R∗2, it was compared to the established phenomenological method for separating R∗2 into orientation‐dependent and ‐independent parts. Results Using the phenomenological method on the classical signal model, the well‐known separation of R∗2 into orientation‐dependent and ‐independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed. Conclusions Since the proposed second‐order model features orientation‐dependent and ‐independent components at distinct temporal orders, it can be used to remove the orientation dependence of R∗2 using only a single GRE measurement
    • 

    corecore