397 research outputs found

    A massive, quiescent galaxy at redshift of z=3.717

    Get PDF
    In the early Universe finding massive galaxies that have stopped forming stars present an observational challenge as their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These have revealed the presence of massive, quiescent early-type galaxies appearing in the universe as early as z\sim2, an epoch 3 Gyr after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy formation models where they form rapidly at z\sim3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have now reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, however the evidence for their existence, and redshift, has relied entirely on coarsely sampled photometry. These early massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here, we report the spectroscopic confirmation of one of these galaxies at redshift z=3.717 with a stellar mass of 1.7×\times1011^{11} M_\odot whose absorption line spectrum shows no current star-formation and which has a derived age of nearly half the age of the Universe at this redshift. The observations demonstrates that the galaxy must have quickly formed the majority of its stars within the first billion years of cosmic history in an extreme and short starburst. This ancestral event is similar to those starting to be found by sub-mm wavelength surveys pointing to a possible connection between these two populations. Early formation of such massive systems is likely to require significant revisions to our picture of early galaxy assembly.Comment: 6 pages, 7 figures. This is the final preprint corresponding closely to the published version. Uploaded 6 months after publication in accordance with Nature polic

    The Outstanding Decisions of the United States Supreme Court in 1954

    Get PDF
    We perform a kinematic and morphological analysis of 44 star-forming galaxies at z ̃ 2 in the COSMOS legacy field using near-infrared spectroscopy from Keck/MOSFIRE and F160W imaging from CANDELS/3D-HST as part of the ZFIRE survey. Our sample consists of cluster and field galaxies from 2.0 < z < 2.5 with K-band multi-object slit spectroscopic measurements of their Hα emission lines. Hα rotational velocities and gas velocity dispersions are measured using the Heidelberg Emission Line Algorithm (HELA), which compares directly to simulated 3D data cubes. Using a suite of simulated emission lines, we determine that HELA reliably recovers input S 0.5 and angular momentum at small offsets, but V 2.2/σ g values are offset and highly scattered. We examine the role of regular and irregular morphology in the stellar mass kinematic scaling relations, deriving the kinematic measurement S 0.5, and finding {log}({S}0.5)=(0.38+/- 0.07){log}(M/{M}☉ -10)+(2.04+/- 0.03) with no significant offset between morphological populations and similar levels of scatter (̃0.16 dex). Additionally, we identify a correlation between M ⋆ and V 2.2/σ g for the total sample, showing an increasing level of rotation dominance with increasing M ⋆, and a high level of scatter for both regular and irregular galaxies. We estimate the specific angular momenta (j disk) of these galaxies and find a slope of 0.36 ± 0.12, shallower than predicted without mass-dependent disk growth, but this result is possibly due to measurement uncertainty at M ⋆ < 9.5 However, through a Kolmogorov-Smirnov test we find irregular galaxies to have marginally higher j disk values than regular galaxies, and high scatter at low masses in both populations

    ZFIRE: The Evolution of the Stellar Mass Tully-Fisher Relation to Redshift 2.0 < Z < 2.5 with MOSFIRE

    Get PDF
    Using observations made with MOSFIRE on Keck I as part of the ZFIRE survey, we present the stellar mass Tully-Fisher relation at 2.0 < z < 2.5. The sample was drawn from a stellar mass limited, Ks-band selected catalog from ZFOURGE over the CANDELS area in the COSMOS field. We model the shear of the Halpha emission line to derive rotational velocities at 2.2X the scale radius of an exponential disk (V2.2). We correct for the blurring effect of a two-dimensional PSF and the fact that the MOSFIRE PSF is better approximated by a Moffat than a Gaussian, which is more typically assumed for natural seeing. We find for the Tully-Fisher relation at 2.0 < z < 2.5 that logV2.2 =(2.18 +/- 0.051)+(0.193 +/- 0.108)(logM/Msun - 10) and infer an evolution of the zeropoint of Delta M/Msun = -0.25 +/- 0.16 dex or Delta M/Msun = -0.39 +/- 0.21 dex compared to z = 0 when adopting a fixed slope of 0.29 or 1/4.5, respectively. We also derive the alternative kinematic estimator S0.5, with a best-fit relation logS0.5 =(2.06 +/- 0.032)+(0.211 +/- 0.086)(logM/Msun - 10), and infer an evolution of Delta M/Msun= -0.45 +/- 0.13 dex compared to z < 1.2 if we adopt a fixed slope. We investigate and review various systematics, ranging from PSF effects, projection effects, systematics related to stellar mass derivation, selection biases and slope. We find that discrepancies between the various literature values are reduced when taking these into account. Our observations correspond well with the gradual evolution predicted by semi-analytic models.Comment: 21 pages, 14 figures, 1 appendix. Accepted for publication by Apj, February 28, 201

    The Bright End of the z~9 and z~10 UV Luminosity Functions using all five CANDELS Fields

    Get PDF
    The deep, wide-area (~800-900 arcmin**2) near-infrared/WFC3/IR + Spitzer/IRAC observations over the CANDELS fields have been a remarkable resource for constraining the bright end of high redshift UV luminosity functions (LFs). However, the lack of HST 1.05-micron observations over the CANDELS fields has made it difficult to identify z~9-10 sources robustly, since such data are needed to confirm the presence of an abrupt Lyman break at 1.2 microns. We report here on the successful identification of many such z~9-10 sources from a new HST program (z9-CANDELS) that targets the highest-probability z~9-10 galaxy candidates with observations at 1.05 microns, to search for a robust Lyman-break at 1.2 microns. The potential z~9-10 candidates are preselected from the full HST, Spitzer/IRAC S-CANDELS observations, and the deepest-available ground-based optical+near-infrared observations. We identified 15 credible z~9-10 galaxies over the CANDELS fields. Nine of these galaxies lie at z~9 and 5 are new identifications. Our targeted follow-up strategy has proven to be very efficient in making use of scarce HST time to secure a reliable sample of z~9-10 galaxies. Through extensive simulations, we replicate the selection process for our sample (both the preselection and follow-up) and use it to improve current estimates for the volume density of bright z~9 and z~10 galaxies. The volume densities we find are 5(-2)(+3)x and 8(-3)(+9)x lower, respectively, than found at z~8. When compared with the best-fit evolution (i.e., dlog_{10} rho(UV)/dz=-0.29+/-0.02) in the UV luminosities densities from z~8 to z~4 integrated to 0.3L*(z=3) (-20 mag), these luminosity densities are 2.6(-0.9)(+1.5)x and 2.2(-1.1)(+2.0)x lower, respectively, than the extrapolated trends. Our new results are broadly consistent with the "accelerated evolution" scenario at z>8, as seen in many theoretical models.Comment: 23 pages, 15 figures, 7 tables, updated to match the version in press, including some minor textual corrections identified at the proof stag

    ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1<z<4

    Get PDF
    We investigate the properties of galaxies as they shut off star formation over the 4 billion years surrounding peak cosmic star formation. To do this we categorize 7000\sim7000 galaxies from 1<z<41<z<4 into 9090 groups based on the shape of their spectral energy distributions (SEDs) and build composite SEDs with R50R\sim 50 resolution. These composite SEDs show a variety of spectral shapes and also show trends in parameters such as color, mass, star formation rate, and emission line equivalent width. Using emission line equivalent widths and strength of the 4000\AA\ break, D(4000)D(4000), we categorize the composite SEDs into five classes: extreme emission line, star-forming, transitioning, post-starburst, and quiescent galaxies. The transitioning population of galaxies show modest Hα\alpha emission (EWREST40EW_{\rm REST}\sim40\AA) compared to more typical star-forming composite SEDs at log10(M/M)10.5\log_{10}(M/M_\odot)\sim10.5 (EWREST80EW_{\rm REST}\sim80\AA). Together with their smaller sizes (3 kpc vs. 4 kpc) and higher S\'ersic indices (2.7 vs. 1.5), this indicates that morphological changes initiate before the cessation of star formation. The transitional group shows a strong increase of over one dex in number density from z3z\sim3 to z1z\sim1, similar to the growth in the quiescent population, while post-starburst galaxies become rarer at z1.5z\lesssim1.5. We calculate average quenching timescales of 1.6 Gyr at z1.5z\sim1.5 and 0.9 Gyr at z2.5z\sim2.5 and conclude that a fast quenching mechanism producing post-starbursts dominated the quenching of galaxies at early times, while a slower process has become more common since z2z\sim2.Comment: Accepted for publication in The Astrophysical Journa

    Magnetic properties of a new molecular-based spin-ladder system: (5IAP)2CuBr4*2H2O

    Full text link
    We have synthesized and characterized a new spin-1/2 Heisenberg antiferromagnetic ladder: bis 5-iodo-2-aminopyridinium tetrabromocuprate(II) dihydrate. X-ray diffraction studies show the structure of the compound to consist of well isolated stacked ladders and the interaction between the Cu(2+) atoms to be due to direct Br...Br contacts. Magnetic susceptibility and magnetization studies show the compound to be in the strong-coupling limit, with the interaction along the rungs (J' ~ 13 K) much greater than the interaction along the rails (J ~ 1 K). Magnetic critical fields are observed near 8.3 T and 10.4 T, respectively, establishing the existence of the energy gap.Comment: 10 pages, 4 figures, submitted to Phys. Rev. B Figure 4 did not print. *.eps files replaced with figures.ps fil

    The distribution of satellites around massive galaxies at 1<z<3 in ZFOURGE/CANDELS: dependence on star formation activity

    Get PDF
    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1<z<3 using imaging from the FourStar Galaxy Evolution Survey (ZFOURGE) and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). The deep near-IR data select satellites down to log(M/M)>9\log(M/M_\odot)>9 at z<3. The radial satellite distribution around centrals is consistent with a projected NFW profile. Massive quiescent centrals, log(M/M)>10.78\log(M/M_\odot)>10.78, have \sim2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ\sigma even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48<log(M/M)<10.7810.48<\log(M/M_\odot)<10.78. Comparing to the Guo2011 semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from \sim0 for log(Mh/M)\log(M_h/M_\odot)\sim11 to \sim1 for log(Mh/M)\log(M_h/M_\odot)\sim13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.Comment: 19 pages, 17 figures, accepted by ApJ. Information on ZFOURGE can be found at http://zfourge.tamu.ed
    corecore