The deep, wide-area (~800-900 arcmin**2) near-infrared/WFC3/IR + Spitzer/IRAC
observations over the CANDELS fields have been a remarkable resource for
constraining the bright end of high redshift UV luminosity functions (LFs).
However, the lack of HST 1.05-micron observations over the CANDELS fields has
made it difficult to identify z~9-10 sources robustly, since such data are
needed to confirm the presence of an abrupt Lyman break at 1.2 microns. We
report here on the successful identification of many such z~9-10 sources from a
new HST program (z9-CANDELS) that targets the highest-probability z~9-10 galaxy
candidates with observations at 1.05 microns, to search for a robust
Lyman-break at 1.2 microns. The potential z~9-10 candidates are preselected
from the full HST, Spitzer/IRAC S-CANDELS observations, and the
deepest-available ground-based optical+near-infrared observations. We
identified 15 credible z~9-10 galaxies over the CANDELS fields. Nine of these
galaxies lie at z~9 and 5 are new identifications. Our targeted follow-up
strategy has proven to be very efficient in making use of scarce HST time to
secure a reliable sample of z~9-10 galaxies. Through extensive simulations, we
replicate the selection process for our sample (both the preselection and
follow-up) and use it to improve current estimates for the volume density of
bright z~9 and z~10 galaxies. The volume densities we find are 5(-2)(+3)x and
8(-3)(+9)x lower, respectively, than found at z~8. When compared with the
best-fit evolution (i.e., dlog_{10} rho(UV)/dz=-0.29+/-0.02) in the UV
luminosities densities from z~8 to z~4 integrated to 0.3L*(z=3) (-20 mag),
these luminosity densities are 2.6(-0.9)(+1.5)x and 2.2(-1.1)(+2.0)x lower,
respectively, than the extrapolated trends. Our new results are broadly
consistent with the "accelerated evolution" scenario at z>8, as seen in many
theoretical models.Comment: 23 pages, 15 figures, 7 tables, updated to match the version in
press, including some minor textual corrections identified at the proof stag