1,142 research outputs found

    Quantum gates between capacitively coupled double quantum dot two-spin qubits

    Full text link
    We study the two-qubit controlled-not gate operating on qubits encoded in the spin state of a pair of electrons in a double quantum dot. We assume that the electrons can tunnel between the two quantum dots encoding a single qubit, while tunneling between the quantum dots that belong to different qubits is forbidden. Therefore, the two qubits interact exclusively through the direct Coulomb repulsion of the electrons. We find that entangling two-qubit gates can be performed by the electrical biasing of quantum dots and/or tuning of the tunneling matrix elements between the quantum dots within the qubits. The entangling interaction can be controlled by tuning the bias through the resonance between the singly-occupied and doubly-occupied singlet ground states of a double quantum dot.Comment: 12 pages, 7 figure

    Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome

    Get PDF
    Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains.Peer reviewe

    Exchange-based CNOT gates for singlet-triplet qubits with spin orbit interaction

    Full text link
    We propose a scheme for implementing the CNOT gate over qubits encoded in a pair of electron spins in a double quantum dot. The scheme is based on exchange and spin orbit interactions and on local gradients in Zeeman fields. We find that the optimal device geometry for this implementation involves effective magnetic fields that are parallel to the symmetry axis of the spin orbit interaction. We show that the switching times for the CNOT gate can be as fast as a few nanoseconds for realistic parameter values in GaAs semiconductors. Guided by recent advances in surface codes, we also consider the perpendicular geometry. In this case, leakage errors due to spin orbit interaction occur but can be suppressed in strong magnetic fields

    Spin electric effects in molecular antiferromagnets

    Full text link
    Molecular nanomagnets show clear signatures of coherent behavior and have a wide variety of effective low-energy spin Hamiltonians suitable for encoding qubits and implementing spin-based quantum information processing. At the nanoscale, the preferred mechanism for control of quantum systems is through application of electric fields, which are strong, can be locally applied, and rapidly switched. In this work, we provide the theoretical tools for the search for single molecule magnets suitable for electric control. By group-theoretical symmetry analysis we find that the spin-electric coupling in triangular molecules is governed by the modification of the exchange interaction, and is possible even in the absence of spin-orbit coupling. In pentagonal molecules the spin-electric coupling can exist only in the presence of spin-orbit interaction. This kind of coupling is allowed for both s=1/2s=1/2 and s=3/2s=3/2 spins at the magnetic centers. Within the Hubbard model, we find a relation between the spin-electric coupling and the properties of the chemical bonds in a molecule, suggesting that the best candidates for strong spin-electric coupling are molecules with nearly degenerate bond orbitals. We also investigate the possible experimental signatures of spin-electric coupling in nuclear magnetic resonance and electron spin resonance spectroscopy, as well as in the thermodynamic measurements of magnetization, electric polarization, and specific heat of the molecules.Comment: 31 pages, 24 figure

    Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes

    Get PDF
    Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Cys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs.Peer reviewe

    Spintronic single qubit gate based on a quantum ring with spin-orbit interaction

    Full text link
    In a quantum ring connected with two external leads the spin properties of an incoming electron are modified by the spin-orbit interaction resulting in a transformation of the qubit state carried by the spin. The ring acts as a one qubit spintronic quantum gate whose properties can be varied by tuning the Rashba parameter of the spin-orbit interaction, by changing the relative position of the junctions, as well as by the size of the ring. We show that a large class of unitary transformations can be attained with already one ring -- or a few rings in series -- including the important cases of the Z, X, and Hadamard gates. By choosing appropriate parameters the spin transformations can be made unitary, which corresponds to lossless gates.Comment: 4 pages, 4 figure
    corecore