1,142 research outputs found
Quantum gates between capacitively coupled double quantum dot two-spin qubits
We study the two-qubit controlled-not gate operating on qubits encoded in the
spin state of a pair of electrons in a double quantum dot. We assume that the
electrons can tunnel between the two quantum dots encoding a single qubit,
while tunneling between the quantum dots that belong to different qubits is
forbidden. Therefore, the two qubits interact exclusively through the direct
Coulomb repulsion of the electrons. We find that entangling two-qubit gates can
be performed by the electrical biasing of quantum dots and/or tuning of the
tunneling matrix elements between the quantum dots within the qubits. The
entangling interaction can be controlled by tuning the bias through the
resonance between the singly-occupied and doubly-occupied singlet ground states
of a double quantum dot.Comment: 12 pages, 7 figure
High Resolution compact X-Ray spectrometer with large spherical crystals for ion temperature measurements
Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome
Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains.Peer reviewe
Exchange-based CNOT gates for singlet-triplet qubits with spin orbit interaction
We propose a scheme for implementing the CNOT gate over qubits encoded in a
pair of electron spins in a double quantum dot. The scheme is based on exchange
and spin orbit interactions and on local gradients in Zeeman fields. We find
that the optimal device geometry for this implementation involves effective
magnetic fields that are parallel to the symmetry axis of the spin orbit
interaction. We show that the switching times for the CNOT gate can be as fast
as a few nanoseconds for realistic parameter values in GaAs semiconductors.
Guided by recent advances in surface codes, we also consider the perpendicular
geometry. In this case, leakage errors due to spin orbit interaction occur but
can be suppressed in strong magnetic fields
Spin electric effects in molecular antiferromagnets
Molecular nanomagnets show clear signatures of coherent behavior and have a
wide variety of effective low-energy spin Hamiltonians suitable for encoding
qubits and implementing spin-based quantum information processing. At the
nanoscale, the preferred mechanism for control of quantum systems is through
application of electric fields, which are strong, can be locally applied, and
rapidly switched. In this work, we provide the theoretical tools for the search
for single molecule magnets suitable for electric control. By group-theoretical
symmetry analysis we find that the spin-electric coupling in triangular
molecules is governed by the modification of the exchange interaction, and is
possible even in the absence of spin-orbit coupling. In pentagonal molecules
the spin-electric coupling can exist only in the presence of spin-orbit
interaction. This kind of coupling is allowed for both and
spins at the magnetic centers. Within the Hubbard model, we find a relation
between the spin-electric coupling and the properties of the chemical bonds in
a molecule, suggesting that the best candidates for strong spin-electric
coupling are molecules with nearly degenerate bond orbitals. We also
investigate the possible experimental signatures of spin-electric coupling in
nuclear magnetic resonance and electron spin resonance spectroscopy, as well as
in the thermodynamic measurements of magnetization, electric polarization, and
specific heat of the molecules.Comment: 31 pages, 24 figure
Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes
Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Cys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs.Peer reviewe
Spintronic single qubit gate based on a quantum ring with spin-orbit interaction
In a quantum ring connected with two external leads the spin properties of an
incoming electron are modified by the spin-orbit interaction resulting in a
transformation of the qubit state carried by the spin. The ring acts as a one
qubit spintronic quantum gate whose properties can be varied by tuning the
Rashba parameter of the spin-orbit interaction, by changing the relative
position of the junctions, as well as by the size of the ring. We show that a
large class of unitary transformations can be attained with already one ring --
or a few rings in series -- including the important cases of the Z, X, and
Hadamard gates. By choosing appropriate parameters the spin transformations can
be made unitary, which corresponds to lossless gates.Comment: 4 pages, 4 figure
- …
