1,160 research outputs found

    Diffuse Lyman Alpha Haloes around Lyman Alpha Emitters at z=3: Do Dark Matter Distributions Determine the Lyman Alpha Spatial Extents?

    Get PDF
    Using stacks of Ly-a images of 2128 Ly-a emitters (LAEs) and 24 protocluster UV-selected galaxies (LBGs) at z=3.1, we examine the surface brightness profiles of Ly-a haloes around high-z galaxies as a function of environment and UV luminosity. We find that the slopes of the Ly-a radial profiles become flatter as the Mpc-scale LAE surface densities increase, but they are almost independent of the central UV luminosities. The characteristic exponential scale lengths of the Ly-a haloes appear to be proportional to the square of the LAE surface densities (r(Lya) \propto Sigma(LAE)^2). Including the diffuse, extended Ly-a haloes, the rest-frame Ly-a equivalent width of the LAEs in the densest regions approaches EW_0(Lya) ~ 200 A, the maximum value expected for young (< 10^7 yr) galaxies. This suggests that Ly-a photons formed via shock compression by gas outflows or cooling radiation by gravitational gas inflows may partly contribute to illuminate the Ly-a haloes; however, most of their Ly-a luminosity can be explained by photo-ionisation by ionising photons or scattering of Ly-a photons produced in HII regions in and around the central galaxies. Regardless of the source of Ly-a photons, if the Ly-a haloes trace the overall gaseous structure following the dark matter distributions, it is not surprising that the Ly-a spatial extents depend more strongly on the surrounding Mpc-scale environment than on the activities of the central galaxies.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    UV Luminosity Function at z~4, 3, and 2

    Full text link
    We use very deep (R_lim=27) UGRI imaging to study the evolution of the faint end of the UV-selected galaxy luminosity function from z~4 to z~2. We find that the number of sub-L* galaxies increases from z~4 to z~3 while the number of bright ones appears to remain constant. We find no evidence for continued evolution to lower redshift, z~2. If real, this differential evolution of the luminosity function suggests that differentially comparing key diagnostics of dust, stellar populations, etc. as a function of z and L may let us isolate the key mechanisms that drive galaxy evolution at high redshift and we describe several such studies currently underway.Comment: To appear in proceedings of the conference "Starbursts - from 30 Doradus to Lyman break galaxies" (IoA, Cambridge UK, Sep 2004), Astrophysics & Space Science Library, eds. de Grijs R., Gonzalez Delgado R.M. (Kluwer: Dordrecht

    Galaxy Clustering at z~3

    Get PDF
    Galaxies at very high redshift (z~3 or greater) are now accessible to wholesale observation, making possible for the first time a robust statistical assessment of their spatial distribution at lookback times approaching ~90% of the age of the Universe. This paper summarizes recent progress in understanding the nature of these early galaxies, concentrating in particular on the clustering properties of photometrically selected ``Lyman break'' galaxies. Direct comparison of the data to predictions and physical insights provided by galaxy and structure formation models is particularly straightforward at these early epochs, and results in critical tests of the ``biased'', hierarchical galaxy formation paradigm.Comment: Presented at Royal Society Discussion Meeting, March 1998, "Large Scale Structure in the Universe", 14 pages LaTeX, 7 ps figures, uses rspublic.sty (included

    The z=0.8596 Damped Lyman Alpha Absorbing Galaxy Toward PKS 0454+039

    Get PDF
    We present {\it Hubble Space Telescope} and ground--based data on the zabs=0.8596z_{abs}=0.8596 metal line absorption system along the line of sight to PKS 0454+0356. The system is a moderate redshift damped Lyman alpha system, with N(HI)=(5.7±0.3)×1020{\rm N(HI)}=(5.7\pm0.3)\times10^{20}~cm2^{-2} as measured from the {\it Faint Object Spectrograph} spectrum. We also present ground--based images which we use to identify the galaxy which most probably gives rise to the damped system; the most likely candidate is relatively underluminous by QSO absorber standards (MB19.0M_B \sim -19.0 for q0=0.5q_0=0.5 and H0=50H_0=50 \kms Mpc1^{-1}), and lies 8.5h1\sim 8.5h^{-1} kpc in projection from the QSO sightline. Ground--based measurements of Zn~II, Cr~II, and Fe~II absorption lines from this system allow us to infer abundances of [Zn/H]=1.1-1.1, [Cr/H]=1.2-1.2, and [Fe/H]=1.2-1.2, indicating overall metallicity similar to damped systems at z>2z >2, and that the depletion of Cr and Fe onto dust grains may be even {\it less} important than in many of the high redshift systems of comparable metallicity. Limits previously placed on the 21-cm optical depth in the z=0.8596z=0.8596 system, together with our new N(H~I) measurement, suggest a very high spin temperature for the H~I, TS>>580T_S >> 580 K.Comment: changed uuencode header to produce .Z file so that unix uncompress command will work without modifying file nam

    Medium-resolution spectroscopy of galaxies with redshifts 2.3 < z < 3.5

    Full text link
    Using FORS2 at the ESO VLT we obtained medium resolution (R ~ 2000) spectra of 12 galaxies with 2.37 < z < 3.40 in the FORS Deep Field. Two individual spectra with good S/N and a composite of all 12 spectra were used to derive properties of the stellar and interstellar absorption lines of galaxies in this redshift range. Systematic differences between the individual spectra were found for the strength and profiles of the intrinsic interstellar lines. For eight spectra with sufficient S/N we measured the `1370' and `1425' metallicity indices. From these indices we find for our sample that galaxies at z > 3 have lower mean metallicity than galaxies at 2.5 < z < 3. However there remain uncertainties concerning the absolute calibration of the metallicity tracers in use for high-redshift galaxies. Additional modeling will be needed to resolve these uncertainties.Comment: 10 pages, 4 figures. Accepted by A&

    A Candidate Brightest Proto-Cluster Galaxy at z = 3.03

    Full text link
    We report the discovery of a very bright (m_R = 22.2) Lyman break galaxy at z = 3.03 that appears to be a massive system in a late stage of merging. Deep imaging reveals multiple peaks in the brightness profile with angular separations of ~0.''8 (~25 h^-1 kpc comoving). In addition, high signal-to-noise ratio rest-frame UV spectroscopy shows evidence for ~5 components based on stellar photospheric and ISM absorption lines with a velocity dispersion of sigma ~460 km s^-1 for the three strongest components. Both the dynamics and high luminosity, as well as our analysis of a LCDM numerical simulation, suggest a very massive system with halo mass M ~ 10^13 M_solar. The simulation finds that all halos at z = 3 of this mass contain sub-halos in agreement with the properties of these observed components and that such systems typically evolve into M ~ 10^14 M_solar halos in groups and clusters by z = 0. This discovery provides a rare opportunity to study the properties and individual components of z ~ 3 systems that are likely to be the progenitors to brightest cluster galaxies.Comment: 14 pages, 3 figures, submitted to ApJ Letter

    Star-forming Galaxies in the 'Redshift Desert'

    Get PDF
    We describe results of optical and near-IR observations of a large spectroscopic sample of star-forming galaxies photometrically-selected to lie in the redshift range 1.4 < z < 2.5, often called the ``redshift desert'' because of historical difficulty in obtaining spectroscopic redshifts in this range. We show that the former ``redshift desert'' is now very much open to observation.Comment: 10 pages, 6 figures, to appear in the Proceedings of the ESO/USM/MPE Workshop on "Multiwavelength Mapping of Galaxy Formation and Evolution", eds. R. Bender and A. Renzin
    corecore