133 research outputs found

    Enhanced Characterization of the Smell of Death by Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GCxGC-TOFMS)

    Get PDF
    Soon after death, the decay process of mammalian soft tissues begins and leads to the release of cadaveric volatile compounds in the surrounding environment. The study of postmortem decomposition products is an emerging field of study in forensic science. However, a better knowledge of the smell of death and its volatile constituents may have many applications in forensic sciences. Domestic pigs are the most widely used human body analogues in forensic experiments, mainly due to ethical restrictions. Indeed, decomposition trials on human corpses are restricted in many countries worldwide. This article reports on the use of comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) for thanatochemistry applications. A total of 832 VOCs released by a decaying pig carcass in terrestrial ecosystem, i.e. a forest biotope, were identified by GCxGC-TOFMS. These postmortem compounds belong to many kinds of chemical class, mainly oxygen compounds (alcohols, acids, ketones, aldehydes, esters), sulfur and nitrogen compounds, aromatic compounds such as phenolic molecules and hydrocarbons. The use of GCxGC-TOFMS in study of postmortem volatile compounds instead of conventional GC-MS was successful

    Development and evaluation of a novel robotic system for search and rescue

    Get PDF
    Search and Rescue robotics is a relatively new field of research, which is growing rapidly as new technologies emerge. However, the robots that are usually applied to the field are generally small and have limited functionality, and almost all of them rely on direct control from a local operator. In this paper, a novel wheeled Search and Rescue robot is proposed which considers new methods of controlling the robot, including using a wireless “tether” in place of a conventional physical one. A prototype is then built which acts as a proof of concept of the robot design and wireless control. The prototype robot is then evaluated to prove its mobility, wireless control and multi-hop networking. The experimental results demonstrate the effectiveness of the proposed design incorporating the rocker-bogie suspension system and the multi-hop method of “wireless tethering”

    Post-mortem volatiles of vertebrate tissue

    Get PDF
    Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted

    MS-SIMULA: simulator for training operators and students on the use of a mass spectrometer

    No full text
    corecore