239 research outputs found

    Rhamnolipid Nano-Micelles Inhibit SARS-CoV-2 Infection and Have No Dermal or Eye Toxic Effects in Rabbits

    Get PDF
    Hand hygiene is considered to be the key factor in controlling and preventing infection, either in hospital care settings or in the community. Alcohol-based hand sanitizers are commonly used due to their rapid action and broad spectrum of microbicidal activity, offering protection against bacteria and viruses. However, their frequent administration during COVID-19 pandemic was associated with serious hazards, such as skin toxicity, including irritation, skin dermatitis, skin dryness or cracking, along with peeling redness or itching, with the higher possibility of getting infections. Thus, there is a need to find alternative and novel approaches for hand sanitation. In our previous publications, we reported that rhamnolipids nano-micelles had a comparable antibacterial activity to alcohol-based hand sanitizer and a lower cytotoxicity against human dermal fibroblast cells. In the current study, we investigated the antiviral activity of rhamnolipids nano-micelles against SARS-CoV-2. There was no cytotoxic effect on Vero cells noted at the tested concentrations of rhamnolipids nano-micelles. The rhamnolipids nano-micelles solution at 20, 78, and 312 µg/mL all demonstrated a significant (p < 0.05) decrease of virus infectivity compared to the virus only and the blank vehicle sample. In addition, an acute irritation test was performed on rabbits to further ascertain the biosafety of rhamnolipids nano-micelles. In the eye and skin irritation tests, no degree of irritation was recorded after topical application of rhamnolipids nano-micelles. In addition, histopathological, biomarker, and hematological analyses from animals treated with rhamnolipids nano-micelles were identical to those recorded for untreated animal. From the above, we can conclude that rhamnolipids nano-micelles are a good candidate to be used as a hand sanitizer instead of alcohol-based hand sanitizers. However, they must still be tested in the future among healthcare workers (HCW) in a health care setting to ascertain their antimicrobial efficacy and safety compared to alcohol-based hand sanitizers

    Rhamnolipid Nano-Micelles Inhibit SARS-CoV-2 Infection and Have No Dermal or Eye Toxic Effects in Rabbits

    Get PDF
    Hand hygiene is considered to be the key factor in controlling and preventing infection, either in hospital care settings or in the community. Alcohol-based hand sanitizers are commonly used due to their rapid action and broad spectrum of microbicidal activity, offering protection against bacteria and viruses. However, their frequent administration during COVID-19 pandemic was associated with serious hazards, such as skin toxicity, including irritation, skin dermatitis, skin dryness or cracking, along with peeling redness or itching, with the higher possibility of getting infections. Thus, there is a need to find alternative and novel approaches for hand sanitation. In our previous publications, we reported that rhamnolipids nano-micelles had a comparable antibacterial activity to alcohol-based hand sanitizer and a lower cytotoxicity against human dermal fibroblast cells. In the current study, we investigated the antiviral activity of rhamnolipids nano-micelles against SARS-CoV-2. There was no cytotoxic effect on Vero cells noted at the tested concentrations of rhamnolipids nano-micelles. The rhamnolipids nano-micelles solution at 20, 78, and 312 µg/mL all demonstrated a significant (p < 0.05) decrease of virus infectivity compared to the virus only and the blank vehicle sample. In addition, an acute irritation test was performed on rabbits to further ascertain the biosafety of rhamnolipids nano-micelles. In the eye and skin irritation tests, no degree of irritation was recorded after topical application of rhamnolipids nano-micelles. In addition, histopathological, biomarker, and hematological analyses from animals treated with rhamnolipids nano-micelles were identical to those recorded for untreated animal. From the above, we can conclude that rhamnolipids nano-micelles are a good candidate to be used as a hand sanitizer instead of alcohol-based hand sanitizers. However, they must still be tested in the future among healthcare workers (HCW) in a health care setting to ascertain their antimicrobial efficacy and safety compared to alcohol-based hand sanitizers

    InfiniteB2[g] sequences

    Get PDF
    4 páginas.We exhibit, for any integer g >= 2, an infinite sequence A € B2[g] such that lim supx--infinito A(x)/ raiz cuadrada x = 3 / 2 raiz cuadrada 2 . raiz cuadrada g-1. In adition, we obtain better estimates for small values of g. For example, we exhibit an infinite sequence A € B2[2] such that lim supx---infinito A(x)/ raiz cuadrada x = raiz cuadrada3/2 .Partially supported by COLCIENCIAS, Colombia and Universidad del Cauca.Peer reviewe

    Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science

    Get PDF
    The COVID-19 pandemic is an unprecedented healthcare emergency causing mortality and illness across the world. Although primarily affecting the lungs, the SARS-CoV-2 virus also affects the cardiovascular system. In addition to cardiac effects, e.g. myocarditis, arrhythmias, and myocardial damage, the vasculature is affected in COVID-19, both directly by the SARS-CoV-2 virus, and indirectly as a result of a systemic inflammatory cytokine storm. This includes the role of the vascular endothelium in the recruitment of inflammatory leucocytes where they contribute to tissue damage and cytokine release, which are key drivers of acute respiratory distress syndrome (ARDS), in disseminated intravascular coagulation, and cardiovascular complications in COVID-19. There is also evidence linking endothelial cells (ECs) to SARS-CoV-2 infection including: (i) the expression and function of its receptor angiotensin-converting enzyme 2 (ACE2) in the vasculature; (ii) the prevalence of a Kawasaki disease-like syndrome (vasculitis) in COVID-19; and (iii) evidence of EC infection with SARS-CoV-2 in patients with fatal COVID-19. Here, the Working Group on Atherosclerosis and Vascular Biology together with the Council of Basic Cardiovascular Science of the European Society of Cardiology provide a Position Statement on the importance of the endothelium in the underlying pathophysiology behind the clinical presentation in COVID-19 and identify key questions for future research to address. We propose that endothelial biomarkers and tests of function (e.g. flow-mediated dilatation) should be evaluated for their usefulness in the risk stratification of COVID-19 patients. A better understanding of the effects of SARS-CoV-2 on endothelial biology in both the micro- and macrovasculature is required, and endothelial function testing should be considered in the follow-up of convalescent COVID-19 patients for early detection of long-term cardiovascular complications

    Efficient Bayesian-based Multi-View Deconvolution

    Full text link
    Light sheet fluorescence microscopy is able to image large specimen with high resolution by imaging the sam- ples from multiple angles. Multi-view deconvolution can significantly improve the resolution and contrast of the images, but its application has been limited due to the large size of the datasets. Here we present a Bayesian- based derivation of multi-view deconvolution that drastically improves the convergence time and provide a fast implementation utilizing graphics hardware.Comment: 48 pages, 20 figures, 1 table, under review at Nature Method

    Species-specific pace of development is associated with differences in protein stability

    Get PDF
    Although many molecular mechanisms controlling developmental processes are evolutionarily conserved, the speed at which the embryo develops can vary substantially between species. For example, the same genetic program, comprising sequential changes in transcriptional states, governs the differentiation of motor neurons in mouse and human, but the tempo at which it operates differs between species. Using in vitro directed differentiation of embryonic stem cells to motor neurons, we show that the program runs more than twice as fast in mouse as in human. This is not due to differences in signaling, nor the genomic sequence of genes or their regulatory elements. Instead, there is an approximately two-fold increase in protein stability and cell cycle duration in human cells compared with mouse cells. This can account for the slower pace of human development and suggests that differences in protein turnover play a role in interspecies differences in developmental tempo

    Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak

    Get PDF
    The heart develops from 2 sources of mesoderm progenitors, the first and second heart field (FHF and SHF). Using a single-cell transcriptomic assay combined with genetic lineage tracing and live imaging, we find the FHF and SHF are subdivided into distinct pools of progenitors in gastrulating mouse embryos at earlier stages than previously thought. Each subpopulation has a distinct origin in the primitive streak. The first progenitors to leave the primitive streak contribute to the left ventricle, shortly after right ventricle progenitor emigrate, followed by the outflow tract and atrial progenitors. Moreover, a subset of atrial progenitors are gradually incorporated in posterior locations of the FHF. Although cells allocated to the outflow tract and atrium leave the primitive streak at a similar stage, they arise from different regions. Outflow tract cells originate from distal locations in the primitive streak while atrial progenitors are positioned more proximally. Moreover, single-cell RNA sequencing demonstrates that the primitive streak cells contributing to the ventricles have a distinct molecular signature from those forming the outflow tract and atrium. We conclude that cardiac progenitors are prepatterned within the primitive streak and this prefigures their allocation to distinct anatomical structures of the heart. Together, our data provide a new molecular and spatial map of mammalian cardiac progenitors that will support future studies of heart development, function, and disease

    Production, purification and characterization of recombinant, full-length human claudin-1

    Get PDF
    The transmembrane domain proteins of the claudin superfamily are the major structural components of cellular tight junctions. One family member, claudin-1, also associates with tetraspanin CD81 as part of a receptor complex that is essential for hepatitis C virus (HCV) infection of the liver. To understand the molecular basis of claudin-1/CD81 association we previously produced and purified milligram quantities of functional, full-length CD81, which binds a soluble form of HCV E2 glycoprotein (sE2). Here we report the production, purification and characterization of claudin-1. Both yeast membrane-bound and detergent-extracted, purified claudin-1 were antigenic and recognized by specific antibodies. Analytical ultracentrifugation demonstrated that extraction with n-octyl-ß-d-glucopyranoside yielded monodispersed, dimeric pools of claudin-1 while extraction with profoldin-8 or n-decylphosphocholine yielded a dynamic mixture of claudin-1 oligomers. Neither form bound sE2 in line with literature expectations, while further functional analysis was hampered by the finding that incorporation of claudin-1 into proteoliposomes rendered them intractable to study. Dynamic light scattering demonstrated that claudin-1 oligomers associate with CD81 in vitro in a defined molar ratio of 1:2 and that complex formation was enhanced by the presence of cholesteryl hemisuccinate. Attempts to assay the complex biologically were limited by our finding that claudin-1 affects the properties of proteoliposomes. We conclude that recombinant, correctly-folded, full-length claudin-1 can be produced in yeast membranes, that it can be extracted in different oligomeric forms that do not bind sE2 and that a dynamic preparation can form a specific complex with CD81 in vitro in the absence of any other cellular components. These findings pave the way for the structural characterization of claudin-1 alone and in complex with CD81
    corecore