INFINITE $B_{2}[g]$ SEQUENCES

Javier Cilleruelo
Universidad Autónoma de Madrid
28049 Madrid, Spain
franciscojavier.cilleruelo@uam.es

Carlos Trujillo ${ }^{1}$
Universidad del Cauca
Popayan, Colombia

Abstract

We exhibit, for any integer $g \geq 2$, an infinite sequence $A \in$ $B_{2}[g]$ such that $\lim _{\sup _{x \rightarrow \infty}} \frac{A(x)}{\sqrt{x}}=\frac{3}{2 \sqrt{2}} \sqrt{g-1}$. In adition, we obtain better estimates for small values of g. For example, we exhibit an infinite sequence $A \in B_{2}[2]$ such that $\lim \sup _{x \rightarrow \infty} \frac{A(x)}{\sqrt{x}}=\sqrt{3 / 2}$

Introduction

For $g \in \mathbb{N}, B_{2}[g]$ denotes the class of all sets $A \subset \mathbb{N}$ such that for all $n \in \mathbb{N}$ the equation $a+a^{\prime}=n, \quad a, a^{\prime} \in A \quad a \leq a^{\prime}$ has at most g solutions. The sets $B_{2}[1]$ are called Sidon sets.

In [6] Erdős proved that if A is an infinite Sidon sequence then $\liminf _{x \rightarrow \infty} \frac{A(x)}{x^{1 / 2}}=0$ where $A(x)=\#\{a \leq x ; \quad a \in A\}$ is the counting function. On the other hand he showed that there exists an infinite Sidon sequence such that $\lim \sup _{x \rightarrow \infty} \frac{A(x)}{x^{1 / 2}}=1 / 2$. This limit was improved to $1 / \sqrt{2}$ by Kruckeberg [5]. Much less is known on infinite $B_{2}[g]$ sequences for $g>1$. It is conjectured that $\lim _{\inf }^{x \rightarrow \infty}$ $\frac{A(x)}{x^{1 / 2}}=0$ for any infinite $B_{2}[g]$ sequence, but it is unknown even for $g=2$.

Respect the limit superior, Kolountzakis [4] proved that there is an infinite $B_{2}[2]$ sequence A such that $\lim _{\sup }^{x \rightarrow \infty} \boldsymbol{} \frac{A(x)}{x^{1 / 2}}=1$. Xingde Jia [3] worked on this topic and, although his method doesn't work for usual $B_{2}[g]$ sequences, he gets interesting upper bounds for sequences such that, fixed m, the number of solutions of $n \equiv a+a^{\prime}(\bmod m), a \leq a^{\prime}$, $a, a^{\prime} \in A$, is less or equal than g, for any integer n.

[^0]We have proceeded in a different way and we improve the previous lower bounds on infinite $B_{2}[g]$ sequences for $g \geq 2$.

Theorem 1. For all $g \geq 2$ there exists an infinite $B_{2}[g]$ sequence A such that $\limsup _{x \rightarrow \infty} \frac{A(x)}{\sqrt{x}}=L_{g}$ where

$$
L_{g}= \begin{cases}\sqrt{3 / 2}, & g=2 \\ 3 / 2, & g=3 \\ \sqrt{\frac{36}{11}}, & g=4 \\ \sqrt{\frac{9}{2}}, & g=5 \\ \sqrt{\frac{100}{17}}, & g=6 \\ \sqrt{\frac{27}{4}}, & g=7 \\ \sqrt{8}, & g=8 \\ \frac{3}{2 \sqrt{2}} \sqrt{g-1}, & g \geq 9\end{cases}
$$

Proof of theorem 1.

To prove the theorem we only need to show that any $B_{2}[g]$ sequence $A_{0}=\left\{n_{1}<n_{2}<\cdots<n_{k}\right\}$ can be extended to a $B_{2}[g]$ sequence $A=\left\{n_{1}<\cdots<n_{k}<n_{k+1}<\cdots<n_{l}\right\}$ where $\frac{l}{\sqrt{n_{l}}}=\frac{A\left(n_{l}\right)}{\sqrt{n_{l}}} \geq L_{g}+o(1)$.

For the construction of A we need two special sets C_{g} and B_{p}, whose properties are stated in the following two Propositions. The proof of the Propositions is postponed to the end of the section.

Proposition 1. For any prime p, there exists a set $B_{p} \subset\left(p^{1 / 2}, p^{2}-p^{1 / 2}\right)$ such that
i) If $b+b^{\prime} \equiv b^{\prime \prime}+b^{\prime \prime \prime}\left(\bmod p^{2}-1\right), b, b^{\prime}, b^{\prime \prime}, b^{\prime \prime \prime} \in B_{p}$ then $\left\{b, b^{\prime}\right\}=$ $\left\{b^{\prime \prime}, b^{\prime \prime \prime}\right\}$;
ii) $\left|b-b^{\prime}\right|>p^{1 / 2}$ for all differents $b, b^{\prime} \in B_{p}$;
iii) $\left|B_{p}\right|>p-4 p^{1 / 2}$.

Proposition 2. For all $g \geq 2$ there exists an integer u_{g} and a set $C_{g} \subset\left[0, u_{g}\right]$ such that, if $r(n)=\#\left\{n=c+c^{\prime} ; \quad c, c^{\prime} \in C_{g}\right\}$, then
i) $r(n) \leq g$ for all integer n;
ii) $r(c) \leq g-1$ and $r(c-1) \leq g-1$ for all $c \in C_{g}$;
iii) $\frac{\left|C_{g}\right|}{\sqrt{u_{g}+1}}=L_{g}$, where L_{g} is defined as in Theorem 1.

The construction of A. Taking $x=n_{k}, p$ a prime, $x^{2}<p<2 x^{2}$ and $m=p^{2}-1$ we define

$$
A=A_{0} \cup D \text { where } D=\bigcup_{c \in C_{g}}\left(B_{p}+c m+2 x\right)
$$

and the sets B_{p} and C_{g} are defined as in the Propositions 1 and 2.
Obviously A is an extension of A_{0}. Then we need to prove that A is a $B_{2}[g]$ sequence satisfying $\frac{|A|}{\sqrt{n_{l}}}=L_{g}+o(1)$ where n_{l} is the last element of A.

Proposition 3. A is a $B_{2}[g]$ sequence.
Proof. If $n \leq 2 x$, then all the representations of n as a sum of two elements of A are of the form $a+a^{\prime} a, a^{\prime} \in A_{0}$. Because A_{0} is a $B_{2}[g]$ sequence, there are at most g representations.

If $n>2 x$, there is at most one representation of the form $a+d$, $a \in A_{0}, d \in D$. Otherwise, if $n=a+d=a^{\prime}+d^{\prime}$ then $x>\left|a-a^{\prime}\right|=$ $\left|d-d^{\prime}\right|=\left|b-b^{\prime}+\left(c_{i}-c_{i^{\prime}}\right) m\right|>p^{1 / 2}>x$. In this inequality we have used the property ii) of Proposition 1 when $c_{i}=c_{i^{\prime}}$ and the condition $B_{p} \subset\left(p^{1 / 2}, p^{2}-p^{1 / 2}\right)$ when $c_{i} \neq c_{i^{\prime}}$. We consider two cases:

1) $n \in A_{0}+D$. Suppose that there are more than g representations,

$$
\begin{gathered}
n=a+d=d_{1}+d_{1}^{\prime}=\cdots=d_{g}+d_{g}^{\prime} \\
n=a+(b+c m+2 x)= \\
=\left(b_{1}+c_{j_{1}} m+2 x\right)+\left(b_{1}^{\prime}+c_{j_{1}^{\prime}} m+2 x\right)=\cdots=\left(b_{g}+c_{j_{g}} m+2 x\right)+\left(b_{g}^{\prime}+c_{j_{g}^{\prime}} m+2 x\right) .
\end{gathered}
$$

We can suppose that d_{i} and d_{i}^{\prime} are such that $b_{i} \leq b_{i}^{\prime}$ and for the property i) of Proposition 1 we have that $b_{i}=b_{j}$ and $b_{i}^{\prime}=b_{j}^{\prime}$ for all i, j.

Then we can write

$$
a+b-b_{1}-b_{1}^{\prime}-2 x+c m=\left(c_{1}+c_{1}^{\prime}\right) m=\cdots=\left(c_{g}+c_{g}^{\prime}\right) m .
$$

We observe that $a+b-b_{1}-b_{1}^{\prime}-2 x<x+\left(p^{2}-p^{1 / 2}\right)-p^{1 / 2}-p^{1 / 2}-2 x<$ $p^{2}-3 p^{1 / 2}<m$ and $a+b-b_{1}-b_{1}^{\prime}-2 x>1+p^{1 / 2}-\left(p^{2}-p^{1 / 2}\right)-\left(p^{2}-\right.$ $\left.p^{1 / 2}\right)-2 x=-2 m+3 p^{1 / 2}-2 x-1>-2 m$ where we have used $x<p^{1 / 2}$ in the last inequality. Then, $a+b-b_{1}-b_{1}^{\prime}-2 x$ is 0 or $-m$. If we divide by m we have g representations of c or $c-1$ as sums of elements of C_{g}. But this is impossible because the property ii) of Proposition 2.
2) $n \notin A_{0}+D$. Then all the representations are in the form $d+d^{\prime}$. If we have ordered d and d^{\prime} as before we have also that $b_{i}=b_{j}$ and $b_{i}^{\prime}=b_{j}^{\prime}$ for all i, j. If there are more than g representations we will have more than g different representations of an integer in the form $c_{i}+c_{i}^{\prime}$, which is impossible because of the propery i) of Proposition 2.

Proposition 4. $\frac{|A|}{\sqrt{n_{l}}}=L_{g}+o(1)$, where n_{l} is the last element of A.
Proof. $|A|=\left|A_{0}\right|+\left|C_{g}\right|\left|B_{p}\right| \geq\left|C_{g}\right| m^{1 / 2}(1+o(1))$ and $|A| \subset\left[1,\left(u_{g}+\right.\right.$ 1) $m+o(m)]$

It is clear that

$$
\frac{|A|}{\sqrt{n_{l}}}=\frac{\left|C_{g}\right| m^{1 / 2}(1+o(1))}{\sqrt{m\left(u_{g}+1\right)+o(m)}}=L_{g}+o(1)
$$

in view of property iii) of Proposition 2.
Proof of Proposition 1. Chowla and Erdős [2] proved that for every prime p there exists a Sidon sequence $B \subset\left[1, p^{2}-1\right]$ with p terms such that if $b+b^{\prime} \equiv b^{\prime \prime}+b^{\prime \prime \prime}\left(\bmod p^{2}-1\right)$ then $\left\{b, b^{\prime}\right\}=\left\{b^{\prime \prime}, b^{\prime \prime \prime}\right\}$.

The set B_{p} we are looking for will be the set B except for the elements lying in the intervals $\left[1, p^{1 / 2}\right] \cup\left[p^{2}-p^{1 / 2}, p^{2}-1\right]$ and those b, b^{\prime} such that $\left|b-b^{\prime}\right|<p^{1 / 2}$.

Because all the differences $b-b^{\prime}$ are different we need to pick up at most $4 p^{1 / 2}$ elements from B.

Proof of Proposition 2. We take $C_{2}=\{1,2,5\}, C_{3}=\{0,1,3\} C_{4}=$ $\{0,1,2,4,7,10\}, C_{5}=\{0,1,2,3,5,7\}, C_{6}=\{0,1,2,3,4,6,8,11,13,16\}$, $C_{7}=\{0,1,2,3,4,5,7,9,11\}, C_{8}=\{0,1,2,3,4,5,6,8,10,12,15,17\}$,

It is easy to prove that these sets satisfy the conditions of Proposition 2.

In [1] it was proved that the set $A^{g}=\{k ; \quad 0 \leq k \leq g-1\} \cup\{g-1+$ $2 k ; \quad 1 \leq k \leq[g / 2]\}$ satisfies that $r(n) \leq g$ for any integer n.

Then, for $g \geq 9$, we take $C_{g}=A^{g-1}$ and we have $r(n) \leq g-1$ for any integer n. In particular, C_{g} satisfies the conditions i) and ii) of Proposition 2.

Also it is easy to see that iii) of Proposition 2 is satisfied.

References

[1] J.Cilleruelo, I.Ruzsa and C. Trujillo, "Upper and lower bound for finite $B_{h}[g]$ sequences, $g>1 "$, preprint.
[2] H.Halberstam and K.F.Roth, "Sequences", Springer-Verlag, New York. 1983.
[3] X.-D. Jia, " $B_{h}[g]$ sequences with large upper density", Journal of Number Theory, 56 ,298-308 (1996).
[4] M.N.Kolountzakis, "The density of $B_{h}[g]$ sequences and the minimun of dense cosine sums". Journal of Number Theory 56, 4-11 (1996)
[5] F. Kruckeberg, " B_{2} Folgen und verwandte Zahlenfolgen", J. Reine Angew. Math. 106 , 53-60 (1961).
[6] A. Stöhr, "Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe", II, J. Reine Angew. Math. 194 111-140 (1955).

[^0]: ${ }^{1}$ Partially supported by COLCIENCIAS, Colombia and UNIVERSIDAD DEL CAUCA

