717 research outputs found

    Allosteric Regulation Alters Carrier Domain Translocation in Pyruvate Carboxylase

    Get PDF
    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate. The reaction occurs in two separate catalytic domains, coupled by the long-range translocation of a biotinylated carrier domain (BCCP). Here, we use a series of hybrid PC enzymes to examine multiple BCCP translocation pathways in PC. These studies reveal that the BCCP domain of PC adopts a wide range of translocation pathways during catalysis. Furthermore, the allosteric activator, acetyl CoA, promotes one specific intermolecular carrier domain translocation pathway. These results provide a basis for the ordered thermodynamic state and the enhanced carboxyl group transfer efficiency in the presence of acetyl CoA, and reveal that the allosteric effector regulates enzyme activity by altering carrier domain movement. Given the similarities with enzymes involved in the modular synthesis of natural products, the allosteric regulation of carrier domain movements in PC is likely to be broadly applicable to multiple important enzyme systems

    Origin of type-2 thermal-ion upflows in the auroral ionosphere

    Get PDF
    International audienceThe origin of thermal ion outflows exceeding 1km/s in the high-latitude F-region has been a subject of considerable debate. For cases with strong convection electric fields, the "evaporation" of the ions due to frictional heating below 400-500km has been shown to provide some satisfactory answers. By contrast, in the more frequent subclass of outflow events observed over auroral arcs, called type-2, there is no observational evidence for ion frictional heating. Instead, an electron temperature increase of up to 6000° K is observed over the outflow region. In this case, field-aligned electric fields have long been suspected to be involved, but this explanation did not seem to agree with expectations from the ion momentum balance. In the present work we provide a consistent scenario for the type-2 ion upflows based on our case study of an event that occurred on 20 February 1990. We introduce, for the first time, the electron energy balance in the analysis. We couple this equation with the ion momentum balance to study the salient features of the observations and conclude that type-2 ion outflows and the accompanying electron heating events are indeed consistent with the existence of a field-aligned electric field. However, for our explanation to work, we have to require that an allowance be made for electron scattering by high frequency turbulence. This turbulence could be generated at first by the very fast response of the electrons themselves to a newly imposed electric field that would be partly aligned with the geomagnetic field. The high frequencies of the waves would make it impossible for the ions to react to the waves. We have found the electron collision frequency associated with scattering from the waves to be rather modest, i.e. comparable to the ambient electron-ion collision frequency. The field-aligned electric field inferred from the observations is likewise of the same order of magnitude as the normal ambipolar field, at least for the case that we have studied in detail. We propose that the field-aligned electric field is maintained by the north-south motion of an east-west arc. The magnetic perturbation associated with the arc itself converts a small fraction of the perpendicular electric field into a field parallel to the total magnetic field, while the north-south motion ensures that the conversion never stops

    Magnetosphere-Ionosphere Coupling Through E-region Turbulence 1: Energy Budget

    Full text link
    During periods of intense geomagnetic activity, strong electric fields and currents penetrate from the magnetosphere into high-latitude ionosphere where they dissipate energy, form electrojets, and excite plasma instabilities in the E-region ionosphere. These instabilities give rise to plasma turbulence which induces non-linear currents and strong anomalous electron heating (AEH) as observed by radars. These two effects can increase the global ionospheric conductances. This paper analyzes the energy budget in the electrojet, while the companion paper applies this analysis to develop a model of anomalous conductivity and frictional heating useful in large-scale simulations and models of the geospace environment. Employing first principles, this paper proves for the general case an earlier conjecture that the source of energy for plasma turbulence and anomalous heating equals the work by external field on the non-linear current. Using a two-fluid model of an arbitrarily magnetized plasma and the quasilinear approximation, this paper describes the energy conversion process, calculates the partial sources of anomalous heating, and reconciles the apparent contradiction between the inherently 2-D non-linear current and the 3-D nature of AEH.Comment: 13 pages, 1 figure; 1st of two companion paper

    The Enzymes of Biotin Dependent CO(2) Metabolism: What Structures Reveal about Their Reaction Mechanisms

    Get PDF
    Biotin is the major cofactor involved in carbon dioxide metabolism. Indeed, biotin-dependent enzymes are ubiquitous in nature and are involved in a myriad of metabolic processes including fatty acid synthesis and gluconeogenesis. The cofactor, itself, is composed of a ureido ring, a tetrahydrothiophene ring, and a valeric acid side chain. It is the ureido ring that functions as the CO2 carrier. A complete understanding of biotin-dependent enzymes is critically important for translational research in light of the fact that some of these enzymes serve as targets for anti-obesity agents, antibiotics, and herbicides. Prior to 1990, however, there was a dearth of information regarding the molecular architectures of biotin-dependent enzymes. In recent years there has been an explosion in the number of three-dimensional structures reported for these proteins. Here we review our current understanding of the structures and functions of biotin-dependent enzymes. In addition, we provide a critical analysis of what these structures have and have not revealed about biotin-dependent catalysis

    Magnetosphere-Ionosphere Coupling Through E-region Turbulence: Anomalous Conductivities and Frictional Heating

    Full text link
    Global magnetospheric MHD codes using ionospheric conductances based on laminar models systematically overestimate the cross-polar cap potential during storm time by up to a factor of two. At these times, strong DC electric fields penetrate to the E region and drive plasma instabilities that create turbulence. This plasma density turbulence induces non-linear currents, while associated electrostatic field fluctuations result in strong anomalous electron heating. These two effects will increase the global ionospheric conductance. Based on the theory of non-linear currents developed in the companion paper, this paper derives the correction factors describing turbulent conductivities and calculates turbulent frictional heating rates. Estimates show that during strong geomagnetic storms the inclusion of anomalous conductivity can double the total Pedersen conductance. This may help explain the overestimation of the cross-polar cap potentials by existing MHD codes. The turbulent conductivities and frictional heating presented in this paper should be included in global magnetospheric codes developed for predictive modeling of space weather.Comment: 13 pages, 5 figures, 2nd of two companion paper

    Elevated Electron Temperatures Around Twin Sporadic E Layers at Low Latitude: Observations and the Case for a Plausible Link to Currents Parallel to the Geomagnetic Field

    Get PDF
    We present data from nighttime sounding rocket flights in the low latitude E region. The payloads carried a sweeping Langmuir probe, a plasma impedance probe, and electric field probes. A detailed examination of the plasma density, temperature, and electric field measurements show two strong sporadic E (Es) layers with very high electron temperatures (∼1000 K) on each side of the upper layer. The lower layer was consistent with the presence of a strong zonal neutral wind shear. The upper layer was strongly influenced by the presence of a strongly negative vertical electric field, with zonal winds and their shears also contributing. A strong downward motion of the plasma from the combined action of the downward electric field and negative zonal wind advected the upper layer far below the region of maximum growth. We have attributed the more puzzling high electron temperatures to frictional heating from parallel currents and shown that the F region nighttime dynamo could easily generate the necessary parallel current densities (1 μA m−2) near the electron density troughs. The electron temperature was also elevated in the Es layers themselves, implying parallel current densities of the order of 15 μA m−2 around the Es peaks. Those parallel currents were attributed to strong Hall current divergences driven by the zonal electric field around the Es peaks

    Nonlinear model of short-scale electrodynamics in the auroral ionosphere

    No full text
    International audienceThe optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohm's law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work). We present the essential elements of this new model and illustrate the model's usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred µA m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.Key words: Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions)</p

    The effects of mesoscale regions of precipitation on the ionospheric dynamics, electrodynamics and electron density in the presence of strong ambient electric fields

    Get PDF
    We have developed a new high resolution two-dimensional model of the high latitude ionosphere in which nonlinear advection terms are closely coupled with the electrodynamics. The model provides a self-consistent description of the ionospheric feedback on the electrodynamical perturbations produced by auroral arc-related particle precipitation in regions with strong ambient electric fields. We find in particular that a heretofore neglected ion Pedersen advection term can introduce considerable changes in the electron density profile, the current density distribution, the conductivities and the electron temperatures. We find that the convective effects can carry the ionisation more than 150 km outside the precipitation region in a few minutes, with attendant large changes in the current distribution and E-region densities that become enhanced outside the region of particle precipitation. The production of a tongue of ionisation that slowly decays outside the auroral boundaries contrasts with the sharp geometric cut-off and associated stronger current densities found in previous studies

    Velocity shear and current driven instability in a collisional F-region

    Get PDF
    We have studied how the presence of collisions affects the behavior of instabilities triggered by a combination of shears and parallel currents in the ionosphere under a variety of ion to electron temperature ratios. To this goal we have numerically solved a kinetic dispersion relation, using a relaxation model to describe the effects of ion and electron collisions. We have compared our solutions to expressions derived in a fluid limit which applied only to large electron to ion temperature ratios. We have limited our study to threshold conditions for the current density and the shears. We have studied how the threshold varies as a function of the wave-vector angle direction and as a function of frequency. As expected, we have found that for low frequencies and/or elevated ion to electron temperature ratios, the kinetic dispersion relation has to be used to evaluate the threshold conditions. We have also found that ion velocity shears can significantly lower the field-aligned threshold current needed to trigger the instability, especially for wave-vectors close to the perpendicular to the magnetic field. However the current density and shear requirements remain significantly higher than if collisions are neglected. Therefore, for ionospheric F-region applications, the effect of collisions should be included in the calculation of instabilities associated with horizontal shears in the vertical flow. Furthermore, in many situations of interest the kinetic solutions should be used instead of the fluid limit, in spite of the fact that the latter can be shown to produce qualitatively valid solutions
    • …
    corecore