1,709 research outputs found
Minimal gauged U(1)_{B-L} model with spontaneous R-parity violation
We study the minimal gauged U(1)_{B-L} supersymmetric model and show that it
provides an attractive theory for spontaneous R-parity violation. Both
U(1)_{B-L} and R-parity are broken by the vacuum expectation value of the
right-handed sneutrino (proportional to the soft SUSY masses), thereby linking
the B-L and soft SUSY scales. In this context we find a consistent mechanism
for generating neutrino masses and a realistic mass spectrum, all without
extending the Higgs sector of the minimal supersymmetry standard model. We
discuss the most relevant collider signals and the connection between the Z'
gauge boson and R-parity violation.Comment: 4 pages, new title, to appear in Physical Review Letter
Higgs boson decays, baryon number violation, and supersymmetry at the LHC
Baryon number violating interactions could modify the signatures of supersymmetric models at the Large Hadron Collider. In this article we investigate the predictions for the Higgs mass and the Higgs decays in a simple extension of the minimal supersymmetric standard model where the local baryon and lepton numbers are spontaneously broken at the TeV scale. This theory predicts baryon number violation at the low scale which can change the current LHC bounds on the supersymmetric spectrum. Using the ATLAS and CMS bounds on the Higgs mass we show the constraints on the sfermion masses, and show the subsequent predictions for the radiative Higgs decays. We found that the Higgs decay into two photons is suppressed due to the existence of new light leptons. In this theory the stops can be very light in agreement with all experimental bounds and we make a brief discussion of the possible signals at the LHC
B and L at the SUSY Scale, Dark Matter and R-parity Violation
We present a simple theory where baryon and lepton numbers are spontaneously
broken at the supersymmetry scale. In this context R-parity must be
spontaneously broken but the theory still contains a stable field which can
play the role of the cold dark matter of the Universe. We discuss the spectrum
of the theory, the properties of the dark matter candidate and the predictions
for direct detection experiments. This theory provides a concrete example of
exotic supersymmetric signatures associated with having the simultaneous
presence of R-parity violating and missing energy signals at the Large Hadron
Collider
Gauge Mediated SUSY Breaking via Seesaw
We present a simple scenario for gauge mediated supersymmetry breaking where
the messengers are also the fields that generate neutrino masses. We show that
the simplest such scenario corresponds to the case where neutrino masses are
generated through the Type I and Type III seesaw mechanisms. The entire
supersymmetric spectrum and Higgs masses are calculable from only four input
parameters. Since the electroweak symmetry is broken through a doubly radiative
mechanism, meaning a nearly zero B-term at the messenger scale which runs down
to acceptable values, one obtains quite a constrained spectrum for the
supersymmetric particles whose properties we describe. We refer to this
mechanism as "nu-GMSB".Comment: a few corrections, references adde
Running with Triplets: How Slepton Masses Change With Doubly-Charged Higgses
We examine the slepton masses of SUSYLR models and how they change due the
presence of light-doubly charged higgs bosons. We discover that the measurement
of the slepton masses could bound and even predict the value of the third
generation Yukawa coupling of leptons to the SU(2)_R Triplets. We also consider
the unification prospects for this model with the addition of left-handed, B -
L = 0 triplets--a model we call the Triplet Extended Supersymmetric Standard
Model (TESSM). Finally, we discuss the changes in the slepton masses due to the
presence of the SU(2)_L triplets.Comment: 20 pages, 6 figures, 4 table
Electromechanical Reliability Testing of Three-Axial Silicon Force Sensors
This paper reports on the systematic electromechanical characterization of a
new three-axial force sensor used in dimensional metrology of micro components.
The siliconbased sensor system consists of piezoresistive mechanicalstress
transducers integrated in thin membrane hinges supporting a suspended flexible
cross structure. The mechanical behavior of the fragile micromechanical
structure isanalyzed for both static and dynamic load cases. This work
demonstrates that the silicon microstructure withstands static forces of 1.16N
applied orthogonally to the front-side of the structure. A statistical Weibull
analysis of the measured data shows that these values are significantly reduced
if the normal force is applied to the back of the sensor. Improvements of the
sensor system design for future development cycles are derived from the
measurement results.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Seesaw Extended MSSM and Anomaly Mediation without Tachyonic Sleptons
Superconformal anomalies provide an elegant and economical way to understand
the soft breaking parameters in SUSY models; however, implementing them leads
to the several undesirable features including: tachyonic sleptons and
electroweak symmetry breaking problems in both the MSSM and the NMSSM. Since
these two theories also have the additonal problem of massless neutrinos, we
have reconsidered the AMSB problems in a class of models that extends the NMSSM
to explain small neutrino masses via the seesaw mechanism. In a recent paper,
we showed that for a class of minimal left-right extensions, a built-in
mechanism exists which naturally solves the tachyonic slepton problem and
provides new alternatives to the MSSM that also have automatic R-parity
conservation. In this paper, we discuss how electroweak symmetry breaking
arises in this model through an NMSSM-like low energy theory with a singlet
VEV, induced by the structure of the left-right extension and of the right
magnitude. We then study the phenomenological issues and find: the LSP is an
Higgsino-wino mix, new phenomenology for chargino decays to the LSP, degenerate
same generation sleptons and a potential for a mild squark-slepton degeneracy.
We also discuss possible collider signatures and the feasibility of dark matter
in this model.Comment: 40 pages, 10 figures, 5 tables; v3: Added addendum and three new
references; v4: Added reference that was inadvertently omitte
A genome-wide association study identifies a susceptibility locus for biliary atresia on 2p16.1 within the gene EFEMP1
Biliary atresia (BA) is a rare pediatric cholangiopathy characterized by fibrosclerosing obliteration of the extrahepatic bile ducts, leading to cholestasis, fibrosis, cirrhosis, and eventual liver failure. The etiology of BA remains unknown, although environmental, inflammatory, infectious, and genetic risk factors have been proposed. We performed a genome-wide association study (GWAS) in a European-American cohort of 343 isolated BA patients and 1716 controls to identify genetic loci associated with BA. A second GWAS was performed in an independent European-American cohort of 156 patients with BA and other extrahepatic anomalies and 212 controls to confirm the identified candidate BA-associated SNPs. Meta-analysis revealed three genome-wide significant BA-associated SNPs on 2p16.1 (rs10865291, rs6761893, and rs727878; P < 5 ×10-8), located within the fifth intron of the EFEMP1 gene, which encodes a secreted extracellular protein implicated in extracellular matrix remodeling, cell proliferation, and organogenesis. RNA expression analysis showed an increase in EFEMP1 transcripts from human liver specimens isolated from patients with either BA or other cholestatic diseases when compared to normal control liver samples. Immunohistochemistry demonstrated that EFEMP1 is expressed in cholangiocytes and vascular smooth muscle cells in liver specimens from patients with BA and other cholestatic diseases, but it is absent from cholangiocytes in normal control liver samples. Efemp1 transcripts had higher expression in cholangiocytes and portal fibroblasts as compared with other cell types in normal rat liver. The identification of a novel BA-associated locus, and implication of EFEMP1 as a new BA candidate susceptibility gene, could provide new insights to understanding the mechanisms underlying this severe pediatric disorder
Yersinia pestis insecticidal-like toxin complex (Tc) family proteins: characterization of expression, subcellular localization, and potential role in infection of the flea vector
BACKGROUND: Toxin complex (Tc) family proteins were first identified as insecticidal toxins in Photorhabdus luminescens and have since been found in a wide range of bacteria. The genome of Yersinia pestis, the causative agent of bubonic plague, contains a locus that encodes the Tc protein homologues YitA, YitB, YitC, and YipA and YipB. Previous microarray data indicate that the Tc genes are highly upregulated by Y. pestis while in the flea vector; however, their role in the infection of fleas and pathogenesis in the mammalian host is unclear. RESULTS: We show that the Tc proteins YitA and YipA are highly produced by Y. pestis while in the flea but not during growth in brain heart infusion (BHI) broth at the same temperature. Over-production of the LysR-type regulator YitR from an exogenous plasmid increased YitA and YipA synthesis in broth culture. The increase in production of YitA and YipA correlated with the yitR copy number and was temperature-dependent. Although highly synthesized in fleas, deletion of the Tc proteins did not alter survival of Y. pestis in the flea or prevent blockage of the proventriculus. Furthermore, YipA was found to undergo post-translational processing and YipA and YitA are localized to the outer membrane of Y. pestis. YitA was also detected by immunofluorescence microscopy on the surface of Y. pestis. Both YitA and YipA are produced maximally at low temperature but persist for several hours after transfer to 37°C. CONCLUSIONS: Y. pestis Tc proteins are highly expressed in the flea but are not essential for Y. pestis to stably infect or produce a transmissible infection in the flea. However, YitA and YipA localize to the outer membrane and YitA is exposed on the surface, indicating that at least YitA is present on the surface when Y. pestis is transmitted into the mammalian host from the flea
Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury
Genetically modified mice represent useful tools for traumatic brain injury (TBI) research and attractive preclinical models for the development of novel therapeutics. Experimental methods that minimize the number of mice needed may increase the pace of discovery. With this in mind, we developed and characterized a prototype electromagnetic (EM) controlled cortical impact device along with refined surgical and behavioral testing techniques. By varying the depth of impact between 1.0 and 3.0 mm, we found that the EM device was capable of producing a broad range of injury severities. Histologically, 2.0-mm impact depth injuries produced by the EM device were similar to 1.0-mm impact depth injuries produced by a commercially available pneumatic device. Behaviorally, 2.0-, 2.5-, and 3.0-mm impacts impaired hidden platform and probe trial water maze performance, whereas 1.5-mm impacts did not. Rotorod and visible platform water maze deficits were also found following 2.5- and 3.0-mm impacts. No impairment of conditioned fear performance was detected. No differences were found between sexes of mice. Inter-operator reliability was very good. Behaviorally, we found that we could statistically distinguish between injury depths differing by 0.5 mm using 12 mice per group and between injury depths differing by 1.0 mm with 7-8 mice per group. Thus, the EM impactor and refined surgical and behavioral testing techniques may offer a reliable and convenient framework for preclinical TBI research involving mice
- …
