112 research outputs found

    Scanning Electron Microscopy of the Human Thyroid Gland and its Disorders

    Get PDF
    The characteristic scanning electron microscopic features of the normal thyroid gland, benign thyroid lesions such as nodular (adenomatous) and colloid goitre, adenomas and thyroiditis, and malignant tumors such as papillary carcinoma, follicular carcinoma, anaplastic carcinoma and medullary carcinoma are described. One or more cilia are present in the center of the follicular surface of almost every epithelial cell in the normal thyroid gland as well as in most goitres. Their number is reduced in adenomas and differentiated carcinomas. Medullary carcinomas and anaplastic carcinomas usually lack cilia. Variation in distribution and appearance of microvilli seems to be related to functional differences in the normal thyroid and goitres. In neoplastic conditions the abundance of microvilli steadily decreases from ordinary papillary carcinomas to follicular variants of papillary carcinoma and to follicular carcinoma. Most of the cells in medullary carcinoma and anaplastic carcinoma have few or no microvilli. Benign and neoplastic Hürthle cells have a very characteristic appearance. Distinct, smooth-surfaced cells are interspersed among cells rich in microvilli. The literature is reviewed. Our own experience from examinations of 264 thyroid specimens is included

    Cystic tumor of the atrioventricular node of the heart appears to be the heart equivalent of the solid cell nests (ultimobranchial rests) of the thyroid

    Get PDF
    We studied a series of 10 solid cell nests (SCNs) of the thyroid and a case of cystic tumor of the atrioventricular node (CTAVN) of the heart and reviewed the literature. The CTAVN and SCNs appeared as cystic and/or solid (squamoid) structures mainly composed of polygonal or oval cells (main cells) admixed with occasional clear cells (neuroendocrine and C cells). Main cells were immunoreactive for simple and stratified epithelial-type cytokeratins, epithelial membrane antigen, carcinoembryonic antigen, carbohydrate antigen 19.9, p63, bcl-2, and galectin-3. Neuroendocrine (and C) cells were positive for simple-type cytokeratins, carcinoembryonic antigen, calcitonin, chromogranin, synaptophysin, and thyroid transcription factor-1. Our data support the hypothesis that the CTAVN of the heart and the SCNs of the thyroid are identical structures that represent the same lesional process. The assumption that CTAVN is a ultimobranchial heterotopia fits with the known role of cardiac neural crest cells in cardiovascular development

    Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells

    Get PDF
    The low-density lipoprotein receptor-related protein (LRP1B), encoding an endocytic LDL-family receptor, is among the 10 most significantly deleted genes across 3312 human cancer specimens. However, currently the apparently crucial role of this lipoprotein receptor in carcinogenesis is not clear. Here we show that LRP1B inactivation (by chromosomal, epigenetic and microRNA (miR)-mediated mechanisms) results in changes to the tumor environment that confer cancer cells an increased growth and invasive capacity. LRP1B displays frequent DNA copy number loss and CpG island methylation, resulting in mRNA underexpression. By using CpG island reporters methylated in vitro, we found that DNA methylation disrupts a functional binding site for the histone-acetyltransferase p300 located at intron 1. We identified and validated an miR targeting LRP1B (miR-548a-5p), which is overexpressed in cancer cell lines as a result of 8q22 DNA gains. Restoration of LRP1B impaired in vitro and in vivo tumor growth, inhibited cell invasion and led to a reduction of matrix metalloproteinase 2 in the extracellular medium. We emphasized the role of an endocytic receptor acting as a tumor suppressor by modulating the extracellular environment composition in a way that constrains the invasive behavior of the cancer cells

    Inverse correlation between PDGFC expression and lymphocyte infiltration in human papillary thyroid carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the PDGF family have been suggested as potential biomarkers for papillary thyroid carcinomas (PTC). However, it is known that both expression and stimulatory effect of PDGF ligands can be affected by inflammatory cytokines. We have performed a microarray study in a collection of PTCs, of which about half the biopsies contained tumour-infiltrating lymphocytes or thyroiditis. To investigate the expression level of PDGF ligands and receptors in PTC we measured the relative mRNA expression of all members of the PDGF family by qRT-PCR in 10 classical PTC, eight clinically aggressive PTC, and five non-neoplastic thyroid specimens, and integrated qRT-PCR data with microarray data to enable us to link PDGF-associated gene expression profiles into networks based on recognized interactions. Finally, we investigated potential influence on PDGF mRNA levels by the presence of tumour-infiltrating lymphocytes.</p> <p>Methods</p> <p>qRT-PCR was performed on <it>PDGFA</it>, <it>PDGFB</it>, <it>PDGFC</it>, <it>PDGFD</it>, <it>PDGFRA PDGFRB </it>and a selection of lymphocyte specific mRNA transcripts. Semiquantitative assessment of tumour-infiltrating lymphocytes was performed on the adjacent part of the biopsy used for RNA extraction for all biopsies, while direct quantitation by qRT-PCR of lymphocyte-specific mRNA transcripts were performed on RNA also subjected to expression analysis. Relative expression values of PDGF family members were combined with a cDNA microarray dataset and analyzed based on clinical findings and PDGF expression patterns. Ingenuity Pathway Analysis (IPA) was used to elucidate potential molecular interactions and networks.</p> <p>Results</p> <p>PDGF family members were differentially regulated at the mRNA level in PTC as compared to normal thyroid specimens. Expression of <it>PDGFA </it>(p = 0.003), <it>PDGFB </it>(p = 0.01) and <it>PDGFC </it>(p = 0.006) were significantly up-regulated in PTCs compared to non-neoplastic thyroid tissue. In addition, expression of <it>PDGFC </it>was significantly up-regulated in classical PTCs as compared to clinically aggressive PTCs (p = 0.006), and <it>PDGFRB </it>were significantly up-regulated in clinically aggressive PTCs (p = 0.01) as compared to non-neoplastic tissue. Semiquantitative assessment of lymphocytes correlated well with quantitation of lymphocyte-specific gene expression. Further more, by combining TaqMan and microarray data we found a strong inverse correlation between <it>PDGFC </it>expression and the expression of lymphocyte specific mRNAs.</p> <p>Conclusion</p> <p>At the mRNA level, several members of the PDGF family are differentially expressed in PTCs as compared to normal thyroid tissue. Of these, only the <it>PDGFC </it>mRNA expression level initially seemed to distinguish classical PTCs from the more aggressive PTCs. However, further investigation showed that <it>PDGFC </it>expression level correlated inversely to the expression of several lymphocyte specific genes, and to the presence of lymphocytes in the biopsies. Thus, we find that <it>PDGFC </it>mRNA expression were down-regulated in biopsies containing infiltrated lymphocytes or thyroiditis. No other PDGF family member could be linked to lymphocyte specific gene expression in our collection of PTCs biopsies.</p

    Follicular thyroid carcinoma invades venous rather than lymphatic vessels

    Get PDF
    Follicular thyroid carcinoma (FTC) tends to metastasize to remote organs rather than local lymph nodes. Separation of FTC from follicular thyroid adenoma (FTA) relies on detection of vascular and/or capsular invasion. We investigated which vascular markers, CD31, CD34 and D2-40 (lymphatic vessel marker), can best evaluate vascular invasion and why FTC tends to metastasize via blood stream to remote organs. Thirty two FTCs and 34 FTAs were retrieved for evaluation. The average age of patients with FTA was 8 years younger than FTC (p = 0.02). The female to male ratio for follicular neoplasm was 25:8. The average size of FTC was larger than FTA (p = 0.003). Fourteen of 32 (44%) FTCs showed venous invasion and none showed lymphatic invasion, with positive CD31 and CD34 staining and negative D2-40 staining of the involved vessels. The average number of involved vessels was 0.88 ± 1.29 with a range from 0 to 5, and the average diameter of involved vessels was 0.068 ± 0.027 mm. None of the 34 FTAs showed vascular invasion. CD31 staining demonstrated more specific staining of vascular endothelial cells than CD34, with less background staining. We recommended using CD31 rather than CD34 and/or D2-40 in confirming/excluding vascular invasion in difficult cases. All identified FTCs with vascular invasions showed involvement of venous channels, rather than lymphatic spaces, suggesting that FTCs prefer to metastasize via veins to distant organs, instead of lymphatic vessels to local lymph nodes, which correlates with previous clinical observations

    Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas

    Get PDF
    Familial Non-Medullary Thyroid Carcinoma (fNMTC) represents 3–7% of all thyroid tumours and is associated with some of the highest familial risks among all cancers, with an inheritance pattern compatible with an autosomal dominant model with reduced penetrance. We previously mapped a predisposing locus, TCO (Thyroid tumour with Cell Oxyphilia) on chromosome 19p13.2, for a particular form of thyroid tumour characterised by cells with an abnormal proliferation of mitochondria (oxyphilic or oncocytic cells). In the present work, we report the systematic screening of 14 candidate genes mapping to the region of linkage in affected TCO members, that led us to identify two novel variants respectively in exon 9 and exon 13 of TIMM44, a mitochondrial inner membrane translocase for the import in the mitochondria of nuclear-encoded proteins. These variants were co-segregating with the TCO phenotype, were not present in a large group of controls and were predicted to negatively affect the protein (exon 9 change) or the transcript (exon 13 change). Functional analysis was performed in vitro for both changes and although no dramatic loss of function effects were identified for the mutant alleles, subtler effects might still be present that could alter Timm44 function and thus promote oncocytic tumour development. Thus we suggest that TIMM44 should be considered for further studies in independent samples of affected individuals with TCO

    Benign and malignant thyroid lesions show instability at microsatellite loci

    Get PDF
    Contains fulltext : 25361___.PDF (publisher's version ) (Open Access
    • …
    corecore