303 research outputs found

    Comparative Morphological Studies on Lyssa in Carnivores and Camels with Special Reference to Its Surgical Resection

    Get PDF
    The lyssa is a morphologically supporting structure situated along the median plan on the ventral surface of the apex of the tongue in some animals. The present study aimed to describe the morphological differences of the lyssa in carnivores (dog and cat) and camel using conformist macroscopic and microscopic methods as well as evaluation of its surgical resection in the dog and cat. The lyssa is a rod-shaped in dog, strip like structure in cat and ridge-like structure in camel. It showed straight course in dog and helical appearance in cat. In the studied species, the lyssa was formed from adipose tissue intermingled with irregular connective tissue. However, dense striated muscles fibers were seen in the caudal half of the lyssa in dog. Besides, few bundles of longitudinally running muscle fibers were observed in cat and camel. In dog, the lyssa was defined by a coarse sheath of connective tissue, this capsule was ill-defined in cat and absent in camel. In cat, a pyramidal extension of the adipose tissue of the lyssa was attached to intrinsic striated muscle of the tongue. Full function of the tongue could be achieved after surgical resection of lyssa in dogs and cats

    An ICP-MS, ESI-MS and molecular modelling investigation of homogeneous gallium affinity tagging (HMAT) of phosphopeptides

    Get PDF
    Protein phosphorylation and de-phosphorylation, provide one of the most common signalling pathways within cells, being involved in regulating cellular processes, mediating enzyme inhibition, protein-protein recognition and protein degradation. Compared with normal proteomics, phosphoproteomics poses some additional challenges requiring more initial separation and additional sensitivity to detect and quantify potentially ultra-low abundance species. In this work, the selective detection of phosphopeptides is described based on the incorporation of a metal tag, gallium-N,N-biscarboxymethyl lysine (Ga-LysNTA), in solution before separation and detection by liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC-ICP-MS). Experimental and theoretical characterisation of the resulting Ga-phosphopeptide complex is presented based on linear ion trap electrospray ionisation mass spectrometry (ESI-MS), Fourier transform mass spectrometry (FT-MS) and molecular modelling data. Linear ion trap electrospray ionisation mass spectrometry (ESI-MS) was employed to study the interaction of the gallium tag with platelet derived growth factor beta receptor (β-PDGF), a small phosphopeptide. In addition high resolution Fourier transform mass spectrometry (FT-MS) was used for accurate mass determination and multistage tandem mass spectrometry of the gallium-β-PDGF complex identified the fragmentation pathway. Finally, molecular modelling was used to investigate the energetically favoured structures of both the Ga-LysNTA material and the β-PDGF-Ga-LysNTA complex

    Aroma-loaded microcapsules with antibacterial activity for eco-friendly textile application: synthesis, characterization, release, and green grafting

    Get PDF
    Fragrant and antimicrobial properties were conferred to cotton fabrics following microencapsulation using green materials. Limonene and vanillin microcapsules were produced by complex coacervation using chitosan/gum Arabic as shell materials and tannic acid as hardening agent. The effect of two emulsifiers; Span 85 and polyglycerol polyricinoleate (PGPR), on the encapsulation efficiency (EE%), microcapsule’s size and morphology, and cumulative release profiles was studied. The mean diameter of the produced microcapsules ranged between 10.4 and 39.0 μm, whereas EE% was found to be between 90.4% and 100%. The use of Span 85 resulted in mononuclear morphology while PGPR gave rise to polynuclear structures, regardless of the core material (vanillin or limonene). The obtained microcapsules demonstrated a sustained release pattern; namely the total cumulative release of the active agents after 7 days at 37 ± 1 °C was 75%, 52% and 19.4% for the polynuclear limonene microcapsules, the mononuclear limonene microcapsules and the polynuclear vanillin microcapsules, respectively. Grafting of the produced microcapsules onto cotton fabrics through na esterification reaction using citric acid as a nontoxic cross-linker followed by thermofixation and curing, was confirmed by SEM and FTIR spectroscopy. Standard antibacterial assays conducted on both microcapsules alone and impregnated onto the fabrics indicated a sustained antibacterial activity.info:eu-repo/semantics/publishedVersio

    Isomer Profiles of Perfluorochemicals in Matched Maternal, Cord, and House Dust Samples: Manufacturing Sources and Transplacental Transfer

    Get PDF
    Background: Perfluorochemicals (PFCs) are detectable in the general population and in the human environment, including house dust. Sources are not well characterized, but isomer patterns should enable differentiation of historical and contemporary manufacturing sources. Isomer-specific maternal–fetal transfer of PFCs has not been examined despite known developmental toxicity of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in rodents

    Perfluoroalkyl acids and their precursors in indoor air sampled in children's bedrooms

    Get PDF
    The contamination levels and patterns of perfluoroallcyl acids (PFAAs) and their precursors in indoor air of children's bedrooms in Finland, Northern Europe, were investigated. Our study is among the most comprehensive indoor air monitoring studies (n = 57) and to our knowledge the first one to analyse air in children's bedrooms for PFASs (17 PFAAs and 9 precursors, including two acrylates, 6:2 FTAC and 6:2 FTMAC). The most frequently detected compound was 8:2 fluorotelomer alcohol (8:2 FTOH) with the highest median concentration (3570 pg/m(3)). FTOH concentrations were generally similar to previous studies, indicating that in 2014/2015 the impact of the industrial transition had been minor on FTOH levels in indoor air. However, in contrast to earlier studies (with one exception), median concentrations of 6:2 FTOH were higher than 10:2 FTOH. The C8 PFAAs are still the most abundant acids, even though they have now been phased out by major manufacturers. The mean concentrations of FOSE/As, especially MeFOSE (89.9 pg/m(3)), were at least an order of magnitude lower compared to previous studies. Collectively the comparison of FTOHs, PFAAs and FOSE/FOSAs with previous studies indicates that indoor air levels of PFASs display a time lag to changes in production of several years. This is the first indoor air study investigating 6:2 FTMAC, which was frequently detected (58%) and displayed some of the highest maximum concentrations (13 000 pg/m(3)). There were several statistically significant correlations between particular house and room characteristics and PFAS concentrations, most interestingly higher EtFOSE air concentrations in rooms with plastic floors compared to wood or laminate. (C) 2016 Published by Elsevier Ltd.Peer reviewe

    Oxaliplatin complexes with carnosine and its derivatives: in vitro cytotoxicity, mass spectrometric and computational studies with a focus on complex fragmentation

    Get PDF
    The complexation of the Pt-based anti-cancer drug oxaliplatin (OxPt) with biological ligands other than DNA is believed to be a major cellular sink for the drug reducing its therapeutic potential and acting as a potential cause of toxicity. In this paper, an in vitro study on hepatocellular carcinoma HepG2 cells suggests that the naturally abundant cytoplasmic dipeptide ligand β-alanyl-L-histidine dipeptide (carnosine) may inhibit the cytotoxic action of OxPt most likely through the formation of complexes that are less cytotoxic than OxPt alone. Evidence is provided to suggest that pre-exposure of HepG2 cells to elevated levels of carnosine appears to have a lasting effect on reducing the cytotoxicity of OxPt even after the removal of the carnosine. This effect, however, is shown to be under kinetic control as its magnitude was shown not to vary significantly with the level of carnosine exposure within the concentration range used in this study. Various mass spectrometry techniques employing electrospray ionization and chip nanospray were employed to study the interaction of oxaliplatin with carnosine as well as two of its derivatives being β-alanyl-N-methylhistidine (anserine) and N-Acetylcarnosine (NAC). Evidence of complexation between OxPt and each of the three ligands examined is presented. Most species observed were unambiguously assigned and compared to their theoretical isotopic patterns. Common fragmentation products due to the collisionally-activated protonated complexes of each of the ligands examined with OxPt, [M + OxPt + H]+ where M= carnosine, anserine or NAC were reported. Density functional calculations at B3LYP/LANL2DZ were used to obtain structural information and relative free energies of different isomers of the observed precursor [Carnosine + OxPt + H]+ both in the gas phase and in solution as well as to probe its fragmentation, highlighting plausible fragmentation mechanisms that account for all the experimental results.Data are presented to show several binding modes between electron rich sites such as N and O centers of carnosine and the Pt metal of OxPt. Calculations were also employed to obtain proton affinities and free energies of key reactions. The proton affinities of carnosine, Anserine and NAC at 298 K were calculated to be 254.4, 255.9 and 250.2 kcal mol-1 respectively. To the best of our knowledge the proton affinities of anserine and N-acetyl-carnosine are the first reported values in the literature
    corecore