285 research outputs found

    RAS mutation status predicts survival and patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases.

    Get PDF
    ObjectiveTo determine the impact of RAS mutation status on survival and patterns of recurrence in patients undergoing curative resection of colorectal liver metastases (CLM) after preoperative modern chemotherapy.BackgroundRAS mutation has been reported to be associated with aggressive tumor biology. However, the effect of RAS mutation on survival and patterns of recurrence after resection of CLM remains unclear.MethodsSomatic mutations were analyzed using mass spectroscopy in 193 patients who underwent single-regimen modern chemotherapy before resection of CLM. The relationship between RAS mutation status and survival outcomes was investigated.ResultsDetected somatic mutations included RAS (KRAS/NRAS) in 34 (18%), PIK3CA in 13 (7%), and BRAF in 2 (1%) patients. At a median follow-up of 33 months, 3-year overall survival (OS) rates were 81% in patients with wild-type versus 52.2% in patients with mutant RAS (P = 0.002); 3-year recurrence-free survival (RFS) rates were 33.5% with wild-type versus 13.5% with mutant RAS (P = 0.001). Liver and lung recurrences were observed in 89 and 83 patients, respectively. Patients with RAS mutation had a lower 3-year lung RFS rate (34.6% vs 59.3%, P < 0.001) but not a lower 3-year liver RFS rate (43.8% vs 50.2%, P = 0.181). In multivariate analyses, RAS mutation predicted worse OS [hazard ratio (HR) = 2.3, P = 0.002), overall RFS (HR = 1.9, P = 0.005), and lung RFS (HR = 2.0, P = 0.01), but not liver RFS (P = 0.181).ConclusionsRAS mutation predicts early lung recurrence and worse survival after curative resection of CLM. This information may be used to individualize systemic and local tumor-directed therapies and follow-up strategies

    HuR is exported to the cytoplasm in oral cancer cells in a different manner from that of normal cells

    Get PDF
    HuR, a ubiquitously expressed member of the Hu protein family that binds and stabilizes an AU-rich element (ARE)-containing mRNAs, is known to shuttle between the nucleus and the cytoplasm via several export pathways. When normal cells were treated with heat shock, HuR was exported to the cytoplasm in a chromosome maintenance region 1 (CRM1)-dependent manner. However, in this study, we demonstrate that HuR is exported to the cytoplasm in oral cancer cells even if the cells were treated with the inhibitor of the CRM1-independent export pathway. Immunohistochemical and biochemical analyses showed that HuR existed in both the cytoplasm and the nucleus in oral cancer cells, such as HSC-3 and Ca9.22, but existed entirely inside the nucleus in normal cells. AU-rich element-mRNAs were also exported to the cytoplasm and stabilised in the oral cancer cells, which were inhibited by HuR knockdown. This export of HuR was not affected by at least 7 h of treatment of leptomycin B (LMB), which is an inhibitor of the CRM1-dependent export pathway. These findings suggest that HuR is exported to the cytoplasm in oral carcinoma cells in a different manner from that of normal cells, and is likely to occur through the perturbation of a normal export pathway

    Increased pre-therapeutic serum vascular endothelial growth factor in patients with early clinical relapse of osteosarcoma

    Get PDF
    To investigate the clinical significance of circulating angiogenic factors, especially in association with early relapse of osteosarcoma, we quantified pre-therapeutic levels of vascular endothelial growth factor, basic fibroblast growth factor and placenta growth factor in the sera of 16 patients with osteosarcoma using an enzyme-linked immunosorbent assay. After a 1-year follow-up, the serum level of angiogenic factors was analysed with respect to microvessel density of the biopsy specimen and clinical disease relapse. The serum vascular endothelial growth factor levels were positively correlated with the microvessel density with statistical significance (P=0.004; Spearman rank correlation) and also significantly higher in seven patients who developed pulmonary metastasis than the remaining nine patients without detectable disease relapse (P=0.0009; The Mann–Whitney U-test). In contrast, the serum levels of basic fibroblast growth factor or placenta growth factor failed to show significant correlation with the microvessel density or relapse of the disease. Although there was no significant correlation between serum vascular endothelial growth factor levels and the tumour volume, the serum vascular endothelial growth factor levels were significantly higher in patients with a vascular endothelial growth factor-positive tumour than those with a vascular endothelial growth factor-negative tumour. These findings suggest that the pre-therapeutic serum vascular endothelial growth factor level reflects the angiogenic property of primary tumour and may have a predictive value on early disease relapse of osteosarcoma

    Tumor-Derived Microvesicles Induce Proangiogenic Phenotype in Endothelial Cells via Endocytosis

    Get PDF
    Background: Increasing evidence indicates that tumor endothelial cells (TEC) differ from normal endothelial cells (NEC). Our previous reports also showed that TEC were different from NEC. For example, TEC have chromosomal abnormality and proangiogenic properties such as high motility and proliferative activity. However, the mechanism by which TEC acquire a specific character remains unclear. To investigate this mechanism, we focused on tumor-derived microvesicles (TMV). Recent studies have shown that TMV contain numerous types of bioactive molecules and affect normal stromal cells in the tumor microenvironment. However, most of the functional mechanisms of TMV remain unclear. Methodology/Principal Findings: Here we showed that TMV isolated from tumor cells were taken up by NEC through endocytosis. In addition, we found that TMV promoted random motility and tube formation through the activation of the phosphoinositide 3-kinase/Akt pathway in NEC. Moreover, the effects induced by TMV were inhibited by the endocytosis inhibitor dynasore. Our results indicate that TMV could confer proangiogenic properties to NEC partly via endocytosis. Conclusion: We for the first time showed that endocytosis of TMV contributes to tumor angiogenesis. These findings offer new insights into cancer therapies and the crosstalk between tumor and endothelial cells mediated by TMV in the tumor microenvironment

    Diaphragm Muscle Weakness in an Experimental Porcine Intensive Care Unit Model

    Get PDF
    In critically ill patients, mechanisms underlying diaphragm muscle remodeling and resultant dysfunction contributing to weaning failure remain unclear. Ventilator-induced modifications as well as sepsis and administration of pharmacological agents such as corticosteroids and neuromuscular blocking agents may be involved. Thus, the objective of the present study was to examine how sepsis, systemic corticosteroid treatment (CS) and neuromuscular blocking agent administration (NMBA) aggravate ventilator-related diaphragm cell and molecular dysfunction in the intensive care unit. Piglets were exposed to different combinations of mechanical ventilation and sedation, endotoxin-induced sepsis, CS and NMBA for five days and compared with sham-operated control animals. On day 5, diaphragm muscle fibre structure (myosin heavy chain isoform proportion, cross-sectional area and contractile protein content) did not differ from controls in any of the mechanically ventilated animals. However, a decrease in single fibre maximal force normalized to cross-sectional area (specific force) was observed in all experimental piglets. Therefore, exposure to mechanical ventilation and sedation for five days has a key negative impact on diaphragm contractile function despite a preservation of muscle structure. Post-translational modifications of contractile proteins are forwarded as one probable underlying mechanism. Unexpectedly, sepsis, CS or NMBA have no significant additive effects, suggesting that mechanical ventilation and sedation are the triggering factors leading to diaphragm weakness in the intensive care unit

    C. elegans SWAN-1 Binds to EGL-9 and Regulates HIF-1-Mediated Resistance to the Bacterial Pathogen Pseudomonas aeruginosa PAO1

    Get PDF
    Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing
    corecore