10,209 research outputs found

    Optimal Capacity of the Blume-Emery-Griffiths perceptron

    Full text link
    A Blume-Emery-Griffiths perceptron model is introduced and its optimal capacity is calculated within the replica-symmetric Gardner approach, as a function of the pattern activity and the imbedding stability parameter. The stability of the replica-symmetric approximation is studied via the analogue of the Almeida-Thouless line. A comparison is made with other three-state perceptrons.Comment: 10 pages, 8 figure

    Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid

    Full text link
    Dynamics of a coarse-grained model for the room-temperature ionic liquid, 1-ethyl-3-methylimidazolium hexafluorophosphate, couched in the united-atom site representation are studied via molecular dynamics simulations. The dynamically heterogeneous behavior of the model resembles that of fragile supercooled liquids. At or close to room temperature, the model ionic liquid exhibits slow dynamics, characterized by nonexponential structural relaxation and subdiffusive behavior. The structural relaxation time, closely related to the viscosity, shows a super-Arrhenius behavior. Local excitations, defined as displacement of an ion exceeding a threshold distance, are found to be mainly responsible for structural relaxation in the alternating structure of cations and anions. As the temperature is lowered, excitations become progressively more correlated. This results in the decoupling of exchange and persistence times, reflecting a violation of the Stokes-Einstein relation.Comment: Published on the Phys. Chem. Chem. Phys. websit

    Metabolomic systems biology of trypanosomes

    Get PDF
    Metabolomics analysis, which aims at the systematic identification and quantification of all metabolites in biological systems, is emerging as a powerful new tool to identify biomarkers of disease, report on cellular responses to environmental perturbation, and to identify the targets of drugs. Here we discuss recent developments in metabolomic analysis, from the perspective of trypanosome research, highlighting remaining challenges and the most promising areas for future research

    Theory of electronic properties and quantum spin blockade in a gated linear triple quantum dot with one electron spin each

    Full text link
    We present a theory of electronic properties and the spin blockade phenomena in a gated linear triple quantum dot. Quadruple points where four different charge configurations are on resonance, particularly involving (1,1,1) configuration, are considered. In the symmetric case, the central dot is biased to higher energy and a single electron tunnels through the device when (1,1,1) configuration is resonant with (1,0,1),(2,0,1),(1,0,2) configurations. The electronic properties of a triple quantum dot are described by a Hubbard model containing two orbitals in the two unbiased dots and a single orbital in the biased dot. The transport through the triple quantum dot molecule involves both singly and doubly occupied configurations and necessitates the description of the (1,1,1) configuration beyond the Heisenberg model. Exact eigenstates of the triple quantum dot molecule with up to three electrons are used to compute current assuming weak coupling to the leads and non-equilibrium occupation of quantum molecule states obtained from the rate equation. The intra-molecular relaxation processes due to acoustic phonons and cotunneling with the leads are included, and are shown to play a crucial role in the spin blockade effect. We find a quantum interference-based spin blockade phenomenon at low source-drain bias and a distinct spin blockade due to a trap state at higher bias. We also show that, for an asymmetric quadruple point with (0,1,1),(1,1,1,),(0,2,1),(0,1,2) configurations on resonance, the spin blockade is analogous to the spin blockade in a double quantum dot
    corecore