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SUMMARY

Metabolomics analysis, which aims at the systematic identification and quantification of all metabolites in biological
systems, is emerging as a powerful new tool to identify biomarkers of disease, report on cellular responses to environmental
perturbation, and to identify the targets of drugs. Here we discuss recent developments in metabolomic analysis, from the
perspective of trypanosome research, highlighting remaining challenges and the most promising areas for future research.
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INTRODUCTION

The African trypanosome, Trypanosoma brucei, the
causative agent of human African trypanosomiasis
(Barrett et al. 2003), has in recent years emerged as a
front runner in systems biology analysis. Repro-
ducible cultivation methods exist and quantitative
analysis is relatively well developed. For example, a
quantitative mathematical model of energy metab-
olism in the long slender form of the trypanosome
(i.e. the form that replicates in the mammalian
bloodstream) has been developed (Bakker et al. 1997)
and iteratively updated after experimental testing
(Bakker et al. 1999a,b; Albert et al. 2005 ; Haanstra
et al. 2008a). Moreover, a model of the gene ex-
pression cascade, based on quantitative knowledge
of transcription, RNA precursor degradation, trans-
splicing and mRNA degradation for phospho-
glycerate kinase (PGK) has recently been generated
(Haanstra et al. 2008b). It is therefore possible to
envisage the derivation of a fully comprehensive
physiology.
Another paper in this volume details the birth of
the ““silicon trypanosome’ project and applications
of dynamic modelling to understand function in the
cells. Here we focus on the experimental approaches
to metabolome analysis that are required to sustain
this ambitious endeavour.

molecular model of trypanosome
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ACQUISITION OF METABOLOMICS DATA

In recent years, methods have become available for
the rapid acquisition of whole genome data, from
which it is possible to infer the entire repertoire of
metabolically active enzymes present within a cell.
Transcriptome analysis can reveal which genes are
expressed at a given time, under a given set of
environmental conditions. Proteomic techniques,
although less able to achieve comprehensive cover-
age of expressed proteins, can reveal if specific
proteins are indeed present under given conditions.
Metabolomics, which aspires to the simultaneous
measurement of all low molecular weight chemicals
within a cell, has been less easy to achieve, mainly
because of the wide range of physicochemical
properties characteristic of cellular metabolites and
the huge dynamic range over which these are present
(Van der Werf et al. 2005; Breitling et al. 2006a).
However, a variety of techniques are available to
measure cellular metabolites. These include nuclear
magnetic resonance (NMR) and a variety of mass
spectrometry-based approaches, such as mass spec-
trometry coupled to liquid chromatography (LC-
MS), gas chromatography (GC-MS), or capillary
electrophoresis (CE-MS). Different types of mass
spectrometer can be used to identify the masses of
metabolites separated through the different chro-
matography platforms.

Alternatively, nuclear magnetic resonance spec-
trometry (NMR) is used in highly quantitative
analysis and also for identifying metabolites that are
difficult to ionise or which are difficult to analyse by
MS, due to their idiosyncratic behaviour on different
chromatographic platforms. The most promising
recent development is the combination of MS and
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NMR technology in hybrid instruments that unite
the sensitivity of MS and the superior quantitative
capacity and specificity of NMR (Yang, 2006).

Relatively little previous work on identification
and quantification of metabolites in 7. brucei has
been performed. The glycolytic intermediates have
been identified as part of the programme investi-
gating energy metabolism using HPLC (Visser and
Opperdoes, 1980) or enzymatic analysis (Visser et al.
1980; Albert et al. 2005, Haanstra et al. 2008 a).
Polyamines and the thiol intermediates of the
trypanothione pathway have also been characterized
using HPL.C-based methodology (Fairlamb et al.
1987; Shim and Fairlamb, 1988; Xiao et al. 2009).
NMR has been used to trace steady-state con-
centrations of abundant phosphorylated compounds
within T. brucei (Moreno et al. 2000) and also to
assess the abundant end products of metabolism
in procyclic trypanosomes from which key enzymes
have been deleted in order to assess likely pathways
of metabolism in this form of the parasite (Riviére
et al. 2004; Coustou et al. 2005, 2008). Similar
studies were also used to assess end products
of glucose metabolism in bloodstream forms
(Mackenzie et al. 1983).

It is imperative that metabolism is quenched as
rapidly as possible prior to extracting metabolites.
Directly applying trypanosomes in suspension to
boiling ethanol achieves this (Kamleh et al. 2008 a),
although it is necessary also to measure medium
without cells to distinguish intracellular and extra-
cellular metabolite content. Rapidly chilling cells
in culture in a dry ice-ethanol bath, followed by cen-
trifugation, washing and extraction in chloroform-
water-methanol, as used for Leishmania (Robinson
et al. 2007 ; Ruben 1" Kind, personal communication)
offers advantages in terms of allowing removal of
extracellular medium and gentler extraction con-
ditions than boiling ethanol. Continued development
of novel extraction methods will enhance metabolite
coverage.

ADVANTAGES OF ULTRA-HIGH RESOLUTION,
ULTRA-HIGH MASS ACCURACY MASS
SPECTROMETRY

We have recently adopted a platform of ultra-
high resolution, ultra-high mass accuracy mass
spectrometry to systematically acquire metabolite
data in T. bruceir (Breitling et al. 2006a,b, 2008).
Modern Fourier transform instruments can measure
the mass of analytes to within 1 ppm, so a metabolite
like glucose (or any of its structural isomers; Mw =
180-0634) can be distinguished from a metabolite of
similar mass such as theophylline (Mw =180-0647)
in a manner that less accurate machines could
not achieve. The problem of structural isomers,
however, requires further analysis to resolve: e.g.
fructose, mannose, galactose, inositol have the same
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mass as glucose. Orthogonal approaches such as
chromatographic behaviour or analysis of metabolite
fragments in GC-MS or tandem mass spectrometry
are required to resolve this issue.

In a first study, trypanosome extracts were gen-
erated from parasites isolated from rats and separated
as a buffy coat. The extracts were directly injected
into a Fourier transform ion cyclotron resonance
mass spectrometer. On the order of 1,000 peaks were
detected (Breitling et al. 2006 a). Many of these were
associated with the 7. brucei lipidome, and it is
possible that the highly ionisable nature of these
metabolites suppressed the ionisation of many non-
lipid metabolites (in spite of using a range of different
extraction solvents to recover a balanced set of
metabolites). Notwithstanding these problems, the
initial datasets were rich enough to enable the
inference of large networks of metabolites that could
be linked through potential metabolic or chemical
links (Breitling et al. 2006 a). Such ab initio networks
reveal the advantage of using high accuracy-high
resolution approaches in which each metabolite
can be assigned an exact mass: since every possible
biochemical transformation (phosphate addition,
hydroxylation, methylation, prenylation etc.) will
alter the size of a metabolite by a unique exact mass,
each metabolite measured in a dataset can be related
to others through the simple addition or subtraction
of those characteristic metabolic masses (Breitling
et al. 2006a, 2008 ; Rogers et al. 2009; Fig. 1). This
ab initio network building technique has a major
role in the inference of novel metabolic pathways
(Jourdan et al. 2008).

Magnetic sector ion cyclotron resonance instru-
ments, as used in that first study, are relatively
expensive and complex to operate. The development
of the Orbitrap mass spectrometer, which can
achieve similar levels of accuracy and resolution,
represented an important advance in metabolomics
research (Breitling et al. 2006; Lim et al. 2007 ; Ding
et al. 2007 ; Dunn et al. 2008 ; Kamleh et al. 2008 a, b;
Kiefer et al. 2008). Furthermore, coupling Orbitrap
mass spectrometry to a range of chromatographic
systems, most importantly HILIC columns that re-
solve hydrophilic compounds, has greatly enhanced
our ability to identify many polar cellular metabolites
(Kamleh et al. 2008 a; Cubbon et al. 2009).

HILIC chromatography linked to an Orbitrap
has now become our standard approach to trypano-
some metabolomics, and early runs have shown
that hundreds of metabolites can be successfully
identified through this route, including signature
trypanosome metabolites such as trypanothione
(Fig. 2). Using these data it has been possible to
develop algorithms to enhance the accuracy of mass
spectra by calibration based on background ions
constantly  detected in the chromatograms
(Scheltema et al. 2008). Furthermore, software that
can remove mass spectrometry artefacts including
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Fig. 1. Building ab initio networks of potential chemical connectivity within metabolomic datasets. This figure
demonstrates the principle of the construction of ab initio metabolic networks as described by Breitling et al. (2006 a).
(A) shows how one measured mass (257.1028) can be connected to others within a dataset by comparing all masses for
potential connectivity through a list of the mass differences associated with known biochemical, metabolic,
transformations. In (B) the central panel, the network is extended by identifying further metabolites that can be linked
to the connected masses by a second metabolic transformation (second level network), and by (C) the network has been
extended by six of these iterations to identify potential connectivity between the observed masses.
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Fig. 2. Extracted mass chromatogram for trypanothione.

common adducts (Nat, Kt NH;, CI7, etc.),
identify isotopomers (based on *C abundance) and
compare spectra along time series, have been applied
to identify those peaks that represent true metab-
olites (Scheltema et al. 2009). This approach allows

the identification of several hundred metabolites.
However, this coverage is significantly lower than the
thousand or so expected for most cells. Given the
chemical diversity of the small chemical species that
comprise the metabolome, comprehensive coverage
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can only be achieved if the same sample is exposed
to a range of different analytical platforms, including
different types of liquid chromatography and sol-
vents, as well as gas chromatography-MS ap-
proaches. The latter platform has underpinned
much of the pioneering work in metabolomics of
Leishmania (Doyle et al. 2009), and also offers a
valuable tool for trypanosome research.

ANALYSIS OF METABOLIC FLUX AND DYNAMICS

The ability to generate static views of the metab-
olome is now available. However, much of what we
wish to understand about the system must come from
dynamic views of how metabolites flow through the
metabolic network. In the case of the glycolytic
pathway, a combination of modelling and exper-
imentation has shown that the control of flux through
the pathway is distributed between several steps
including the glucose transporter (TH'T1), which
exerts some 40% of the flux control (Bakker et al.
19995), and most likely glyceraldehyde 3-phosphate
dehydrogenase, glycerol phosphate dehydrogenase,
phosphoglycerate mutase and the mitochondrial
glycerol-3-phosphate oxidase (Albert et al. 2005).
In contrast, in mammals, hexokinase and phospho-
fructokinase assume most control over the pathway.
A great deal of further work is required to refine
even these current relatively simple models. For
example, kinetic data are usually obtained from
purified enzymes in relatively simple buffer systems,
that by definition lack much of the complexity that
will govern kinetic behaviour in vivo. Teusink et al.
(2000) have shown in yeast that such differences
between in vivo and in vitro parameters currently
limit our capability to explain pathway behaviour
ab initio from enzyme kinetic properties. Time-
dependent metabolite patterns have a much richer
information content than steady-state data and will
be vital to bridge the gap between in vitro biochem-
istry and the iz vivo behaviour of metabolic pathways
(Hynne et al. 2001). Metabolomics approaches,
particularly those using mass spectrometry, now
offer the possibility to measure flux through multiple
pathways simultaneously (Weichert et al. 2007,
Tang et al. 2009 ; Niittylae et al. 2009). In addition to
providing a means of testing mathematical models of
metabolism, these approaches can provide data that
might even allow the prediction of kinetic parameters
(or at least a range of parameters that could ac-
count for observed behaviour) (Kiimmel et al. 2006
Hynne et al. 2001). Such model improvement will
be important to make better predictions of the
adaptive capacity of metabolism towards environ-
mental changes, such as the addition of drugs and/or
the signals that trigger parasite differentiation.
Metabolomics approaches will also reveal the
relative importance of parallel routes in the network.
Pulse-chase experiments can follow the distribution
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of a precursor metabolite through the metabolome
in time. For example, by adding a pulse of heavy
atom-labelled glucose (with one or more of the
carbon atoms in glucose labelled with C) the
accumulation of the heavy isotope in the different
metabolites of the glycolytic and pentose phosphate
pathways can be measured. In our rapid-stop pro-
tocol (Kamleh et al. 2008a), where trypanosome
metabolism is quenched instantaneously by squirt-
ing trypanosomes in suspension into boiling ethanol,
we can, in principle, make repeated measurements at
very short intervals (down to seconds), to measure
the dynamic distribution of label over time. The
same principle can be applied to other pathways; for
example, the flux of labelled cysteine, glutamate and
glycine into glutathione and trypanothione pathway
intermediates. This ability to actually measure fluxes
will play an invaluable role in learning about those
parameters that control dynamic flux through the
metabolome.

GENOME-WIDE MODELS

Existing kinetic models of trypanosome metabolism
describe relatively small parts of the complete
metabolic network, while the metabolomics tech-
niques discussed in this paper aim at covering a large
part of the metabolic network. They are usually in-
terpreted by mapping the results onto genome-based
reconstructions of the metabolic potential of the or-
ganism of interest. This is, for instance, possible
using the Pathway Tools software (Karp et al. 2002)
that allows interactive interrogation of the results
and has already proven useful for many organisms.
A genome-wide reconstruction of the Leishmania
metabolic network (LeishCyc) has recently been
published (Doyle et al. 2009). A T. brucei recon-
struction (TrypanoCyc) is also being made
(Chukualim et al. 2008 ; Jourdan et al. unpublished).
The KEGG environment (Kanehisa et al. 2008) also
represents a good background in which to represent
measurements. Software that allows direct projec-
tion of high accuracy metabolomics datasets onto the
KEGG contextual overview is available (Suhre and
Schmitt-Kopplin, 2008).

In addition to the simple, static views of the
metabolome provided by the MetaCyc and KEGG
environments, other computational techniques, that
have been developed to study the metabolic potential
at a genome scale in a more dynamic fashion, are
available (Breitling et al. 2008; Feist et al. 2009).
Constraints-based models based on stoichiometric
matrices have become widely used (Edwards et al.
2001) and have recently been generated for Leish-
mania (Chavali et al. 2008) and T'. cruzi (Roberts et al.
2009). These can assist in drug target discovery by
identifying essential enzymes whose absence is
catastrophic to cellular functioning (Jamshidi and
Palsson, 2007).
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In the long run, the ambitious aim of this work is
to help identify those parts of metabolism most
amenable to targeting by novel drugs.
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