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SUMMARY

Metabolomics analysis, which aims at the systematic identification and quantification of all metabolites in biological

systems, is emerging as a powerful new tool to identify biomarkers of disease, report on cellular responses to environmental

perturbation, and to identify the targets of drugs. Here we discuss recent developments in metabolomic analysis, from the

perspective of trypanosome research, highlighting remaining challenges and the most promising areas for future research.
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INTRODUCTION

The African trypanosome, Trypanosoma brucei, the

causative agent of human African trypanosomiasis

(Barrett et al. 2003), has in recent years emerged as a

front runner in systems biology analysis. Repro-

ducible cultivation methods exist and quantitative

analysis is relatively well developed. For example, a

quantitative mathematical model of energy metab-

olism in the long slender form of the trypanosome

(i.e. the form that replicates in the mammalian

bloodstream) has been developed (Bakker et al. 1997)

and iteratively updated after experimental testing

(Bakker et al. 1999a, b ; Albert et al. 2005; Haanstra

et al. 2008a). Moreover, a model of the gene ex-

pression cascade, based on quantitative knowledge

of transcription, RNA precursor degradation, trans-

splicing and mRNA degradation for phospho-

glycerate kinase (PGK) has recently been generated

(Haanstra et al. 2008b). It is therefore possible to

envisage the derivation of a fully comprehensive

molecular model of trypanosome physiology.

Another paper in this volume details the birth of

the ‘‘silicon trypanosome’’ project and applications

of dynamic modelling to understand function in the

cells. Here we focus on the experimental approaches

to metabolome analysis that are required to sustain

this ambitious endeavour.

ACQUISITION OF METABOLOMICS DATA

In recent years, methods have become available for

the rapid acquisition of whole genome data, from

which it is possible to infer the entire repertoire of

metabolically active enzymes present within a cell.

Transcriptome analysis can reveal which genes are

expressed at a given time, under a given set of

environmental conditions. Proteomic techniques,

although less able to achieve comprehensive cover-

age of expressed proteins, can reveal if specific

proteins are indeed present under given conditions.

Metabolomics, which aspires to the simultaneous

measurement of all low molecular weight chemicals

within a cell, has been less easy to achieve, mainly

because of the wide range of physicochemical

properties characteristic of cellular metabolites and

the huge dynamic range over which these are present

(Van der Werf et al. 2005; Breitling et al. 2006a).

However, a variety of techniques are available to

measure cellular metabolites. These include nuclear

magnetic resonance (NMR) and a variety of mass

spectrometry-based approaches, such as mass spec-

trometry coupled to liquid chromatography (LC-

MS), gas chromatography (GC-MS), or capillary

electrophoresis (CE-MS). Different types of mass

spectrometer can be used to identify the masses of

metabolites separated through the different chro-

matography platforms.

Alternatively, nuclear magnetic resonance spec-

trometry (NMR) is used in highly quantitative

analysis and also for identifying metabolites that are

difficult to ionise or which are difficult to analyse by

MS, due to their idiosyncratic behaviour on different

chromatographic platforms. The most promising

recent development is the combination of MS and
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NMR technology in hybrid instruments that unite

the sensitivity of MS and the superior quantitative

capacity and specificity of NMR (Yang, 2006).

Relatively little previous work on identification

and quantification of metabolites in T. brucei has

been performed. The glycolytic intermediates have

been identified as part of the programme investi-

gating energy metabolism using HPLC (Visser and

Opperdoes, 1980) or enzymatic analysis (Visser et al.

1980; Albert et al. 2005, Haanstra et al. 2008a).

Polyamines and the thiol intermediates of the

trypanothione pathway have also been characterized

using HPLC-based methodology (Fairlamb et al.

1987; Shim and Fairlamb, 1988; Xiao et al. 2009).

NMR has been used to trace steady-state con-

centrations of abundant phosphorylated compounds

within T. brucei (Moreno et al. 2000) and also to

assess the abundant end products of metabolism

in procyclic trypanosomes from which key enzymes

have been deleted in order to assess likely pathways

of metabolism in this form of the parasite (Rivière

et al. 2004; Coustou et al. 2005, 2008). Similar

studies were also used to assess end products

of glucose metabolism in bloodstream forms

(Mackenzie et al. 1983).

It is imperative that metabolism is quenched as

rapidly as possible prior to extracting metabolites.

Directly applying trypanosomes in suspension to

boiling ethanol achieves this (Kamleh et al. 2008a),

although it is necessary also to measure medium

without cells to distinguish intracellular and extra-

cellular metabolite content. Rapidly chilling cells

in culture in a dry ice-ethanol bath, followed by cen-

trifugation, washing and extraction in chloroform-

water-methanol, as used for Leishmania (Robinson

et al. 2007;RubenT’Kind, personal communication)

offers advantages in terms of allowing removal of

extracellular medium and gentler extraction con-

ditions than boiling ethanol. Continued development

of novel extraction methods will enhance metabolite

coverage.

ADVANTAGES OF ULTRA-HIGH RESOLUTION,

ULTRA-HIGH MASS ACCURACY MASS

SPECTROMETRY

We have recently adopted a platform of ultra-

high resolution, ultra-high mass accuracy mass

spectrometry to systematically acquire metabolite

data in T. brucei (Breitling et al. 2006a, b, 2008).

Modern Fourier transform instruments can measure

the mass of analytes to within 1 ppm, so a metabolite

like glucose (or any of its structural isomers; Mw=
180.0634) can be distinguished from a metabolite of

similar mass such as theophylline (Mw=180.0647)

in a manner that less accurate machines could

not achieve. The problem of structural isomers,

however, requires further analysis to resolve: e.g.

fructose, mannose, galactose, inositol have the same

mass as glucose. Orthogonal approaches such as

chromatographic behaviour or analysis of metabolite

fragments in GC-MS or tandem mass spectrometry

are required to resolve this issue.

In a first study, trypanosome extracts were gen-

erated from parasites isolated from rats and separated

as a buffy coat. The extracts were directly injected

into a Fourier transform ion cyclotron resonance

mass spectrometer. On the order of 1,000 peaks were

detected (Breitling et al. 2006a). Many of these were

associated with the T. brucei lipidome, and it is

possible that the highly ionisable nature of these

metabolites suppressed the ionisation of many non-

lipid metabolites (in spite of using a range of different

extraction solvents to recover a balanced set of

metabolites). Notwithstanding these problems, the

initial datasets were rich enough to enable the

inference of large networks of metabolites that could

be linked through potential metabolic or chemical

links (Breitling et al. 2006a). Such ab initio networks

reveal the advantage of using high accuracy–high

resolution approaches in which each metabolite

can be assigned an exact mass: since every possible

biochemical transformation (phosphate addition,

hydroxylation, methylation, prenylation etc.) will

alter the size of a metabolite by a unique exact mass,

each metabolite measured in a dataset can be related

to others through the simple addition or subtraction

of those characteristic metabolic masses (Breitling

et al. 2006a, 2008; Rogers et al. 2009; Fig. 1). This

ab initio network building technique has a major

role in the inference of novel metabolic pathways

(Jourdan et al. 2008).

Magnetic sector ion cyclotron resonance instru-

ments, as used in that first study, are relatively

expensive and complex to operate. The development

of the Orbitrap mass spectrometer, which can

achieve similar levels of accuracy and resolution,

represented an important advance in metabolomics

research (Breitling et al. 2006; Lim et al. 2007; Ding

et al. 2007; Dunn et al. 2008; Kamleh et al. 2008a, b ;

Kiefer et al. 2008). Furthermore, coupling Orbitrap

mass spectrometry to a range of chromatographic

systems, most importantly HILIC columns that re-

solve hydrophilic compounds, has greatly enhanced

our ability to identifymany polar cellular metabolites

(Kamleh et al. 2008a ; Cubbon et al. 2009).

HILIC chromatography linked to an Orbitrap

has now become our standard approach to trypano-

some metabolomics, and early runs have shown

that hundreds of metabolites can be successfully

identified through this route, including signature

trypanosome metabolites such as trypanothione

(Fig. 2). Using these data it has been possible to

develop algorithms to enhance the accuracy of mass

spectra by calibration based on background ions

constantly detected in the chromatograms

(Scheltema et al. 2008). Furthermore, software that

can remove mass spectrometry artefacts including
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common adducts (Na+, K+ NH4
+, Cl–, etc.),

identify isotopomers (based on 13C abundance) and

compare spectra along time series, have been applied

to identify those peaks that represent true metab-

olites (Scheltema et al. 2009). This approach allows

the identification of several hundred metabolites.

However, this coverage is significantly lower than the

thousand or so expected for most cells. Given the

chemical diversity of the small chemical species that

comprise the metabolome, comprehensive coverage
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Fig. 1. Building ab initio networks of potential chemical connectivity within metabolomic datasets. This figure

demonstrates the principle of the construction of ab initio metabolic networks as described by Breitling et al. (2006a).

(A) shows how one measured mass (257.1028) can be connected to others within a dataset by comparing all masses for

potential connectivity through a list of the mass differences associated with known biochemical, metabolic,

transformations. In (B) the central panel, the network is extended by identifying further metabolites that can be linked

to the connected masses by a second metabolic transformation (second level network), and by (C) the network has been

extended by six of these iterations to identify potential connectivity between the observed masses.
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can only be achieved if the same sample is exposed

to a range of different analytical platforms, including

different types of liquid chromatography and sol-

vents, as well as gas chromatography-MS ap-

proaches. The latter platform has underpinned

much of the pioneering work in metabolomics of

Leishmania (Doyle et al. 2009), and also offers a

valuable tool for trypanosome research.

ANALYSIS OF METABOLIC FLUX AND DYNAMICS

The ability to generate static views of the metab-

olome is now available. However, much of what we

wish to understand about the systemmust come from

dynamic views of how metabolites flow through the

metabolic network. In the case of the glycolytic

pathway, a combination of modelling and exper-

imentation has shown that the control of flux through

the pathway is distributed between several steps

including the glucose transporter (THT1), which

exerts some 40% of the flux control (Bakker et al.

1999b), and most likely glyceraldehyde 3-phosphate

dehydrogenase, glycerol phosphate dehydrogenase,

phosphoglycerate mutase and the mitochondrial

glycerol-3-phosphate oxidase (Albert et al. 2005).

In contrast, in mammals, hexokinase and phospho-

fructokinase assume most control over the pathway.

A great deal of further work is required to refine

even these current relatively simple models. For

example, kinetic data are usually obtained from

purified enzymes in relatively simple buffer systems,

that by definition lack much of the complexity that

will govern kinetic behaviour in vivo. Teusink et al.

(2000) have shown in yeast that such differences

between in vivo and in vitro parameters currently

limit our capability to explain pathway behaviour

ab initio from enzyme kinetic properties. Time-

dependent metabolite patterns have a much richer

information content than steady-state data and will

be vital to bridge the gap between in vitro biochem-

istry and the in vivo behaviour of metabolic pathways

(Hynne et al. 2001). Metabolomics approaches,

particularly those using mass spectrometry, now

offer the possibility to measure flux through multiple

pathways simultaneously (Weichert et al. 2007;

Tang et al. 2009; Niittylae et al. 2009). In addition to

providing a means of testing mathematical models of

metabolism, these approaches can provide data that

might even allow the prediction of kinetic parameters

(or at least a range of parameters that could ac-

count for observed behaviour) (Kümmel et al. 2006;

Hynne et al. 2001). Such model improvement will

be important to make better predictions of the

adaptive capacity of metabolism towards environ-

mental changes, such as the addition of drugs and/or

the signals that trigger parasite differentiation.

Metabolomics approaches will also reveal the

relative importance of parallel routes in the network.

Pulse-chase experiments can follow the distribution

of a precursor metabolite through the metabolome

in time. For example, by adding a pulse of heavy

atom-labelled glucose (with one or more of the

carbon atoms in glucose labelled with 13C) the

accumulation of the heavy isotope in the different

metabolites of the glycolytic and pentose phosphate

pathways can be measured. In our rapid-stop pro-

tocol (Kamleh et al. 2008a), where trypanosome

metabolism is quenched instantaneously by squirt-

ing trypanosomes in suspension into boiling ethanol,

we can, in principle, make repeated measurements at

very short intervals (down to seconds), to measure

the dynamic distribution of label over time. The

same principle can be applied to other pathways; for

example, the flux of labelled cysteine, glutamate and

glycine into glutathione and trypanothione pathway

intermediates. This ability to actually measure fluxes

will play an invaluable role in learning about those

parameters that control dynamic flux through the

metabolome.

GENOME-WIDE MODELS

Existing kinetic models of trypanosome metabolism

describe relatively small parts of the complete

metabolic network, while the metabolomics tech-

niques discussed in this paper aim at covering a large

part of the metabolic network. They are usually in-

terpreted by mapping the results onto genome-based

reconstructions of the metabolic potential of the or-

ganism of interest. This is, for instance, possible

using the Pathway Tools software (Karp et al. 2002)

that allows interactive interrogation of the results

and has already proven useful for many organisms.

A genome-wide reconstruction of the Leishmania

metabolic network (LeishCyc) has recently been

published (Doyle et al. 2009). A T. brucei recon-

struction (TrypanoCyc) is also being made

(Chukualim et al. 2008; Jourdan et al. unpublished).

The KEGG environment (Kanehisa et al. 2008) also

represents a good background in which to represent

measurements. Software that allows direct projec-

tion of high accuracy metabolomics datasets onto the

KEGG contextual overview is available (Suhre and

Schmitt-Kopplin, 2008).

In addition to the simple, static views of the

metabolome provided by the MetaCyc and KEGG

environments, other computational techniques, that

have been developed to study the metabolic potential

at a genome scale in a more dynamic fashion, are

available (Breitling et al. 2008; Feist et al. 2009).

Constraints-based models based on stoichiometric

matrices have become widely used (Edwards et al.

2001) and have recently been generated for Leish-

mania (Chavali et al. 2008) andT. cruzi (Roberts et al.

2009). These can assist in drug target discovery by

identifying essential enzymes whose absence is

catastrophic to cellular functioning (Jamshidi and

Palsson, 2007).
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In the long run, the ambitious aim of this work is

to help identify those parts of metabolism most

amenable to targeting by novel drugs.
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