2,935 research outputs found

    Measurements of the effect of horizontal variability of atmospheric backscatter on dial measurements

    Get PDF
    The horizontal variability of atmospheric backscatter may have a substantial effect on how Differential Absorption Lidar (DIAL) data must be taken and analyzed. To minimize errors, lidar pulse pairs are taken with time separations which are short compared to the time scales associated with variations in atmospheric backscatter. To assess the atmospheric variability for time scales which are long compared to the lidar pulse repetition rate, the variance of the lidar return signal in a given channel can be computed. The variances of the on-line, off-line, and ration of the on-line to off-line signals at given altitudes obtained with the dual solid-state Alexandrite laser system were calculated. These evaluations were made for both down-looking aircraft and up-looking ground-based lidar data. Data were taken with 200 microsecond separation between on-line and off-line laser pulses, 30 m altitude resolution, 5 Hz repetition rate, and the signal were normalized for outgoing laser energy

    Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    Get PDF
    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft

    Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    Get PDF
    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots

    Multitasking versus multiplexing: Toward a normative account of limitations in the simultaneous execution of control-demanding behaviors

    Get PDF
    Why is it that behaviors that rely on control, so striking in their diversity and flexibility, are also subject to such striking limitations? Typically, people cannot engage in more than a few—and usually only a single—control-demanding task at a time. This limitation was a defining element in the earliest conceptualizations of controlled processing; it remains one of the most widely accepted axioms of cognitive psychology, and is even the basis for some laws (e.g., against the use of mobile devices while driving). Remarkably, however, the source of this limitation is still not understood. Here, we examine one potential source of this limitation, in terms of a trade-off between the flexibility and efficiency of representation (“multiplexing”) and the simultaneous engagement of different processing pathways (“multitasking”). We show that even a modest amount of multiplexing rapidly introduces cross-talk among processing pathways, thereby constraining the number that can be productively engaged at once. We propose that, given the large number of advantages of efficient coding, the human brain has favored this over the capacity for multitasking of control-demanding processes.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Fisher information and multiparticle entanglement

    Full text link
    The Fisher information FF gives a limit to the ultimate precision achievable in a phase estimation protocol. It has been shown recently that the Fisher information for a linear two-mode interferometer cannot exceed the number of particles if the input state is separable. As a direct consequence, with such input states the shot-noise limit is the ultimate limit of precision. In this work, we go a step further by deducing bounds on FF for several multiparticle entanglement classes. These bounds imply that genuine multiparticle entanglement is needed for reaching the highest sensitivities in quantum interferometry. We further compute similar bounds on the average Fisher information Fˉ\bar F for collective spin operators, where the average is performed over all possible spin directions. We show that these criteria detect different sets of states and illustrate their strengths by considering several examples, also using experimental data. In particular, the criterion based on Fˉ\bar F is able to detect certain bound entangled states.Comment: Published version. Notice also the following article [Phys. Rev. A 85, 022322 (2012), DOI: 10.1103/PhysRevA.85.022322] by Geza T\'oth on the same subjec

    Phylogenetic Analysis Supports Horizontal Transmission as a Driving Force of the Spread of Avian Bornaviruses

    Get PDF
    Background Avian bornaviruses are a genetically diverse group of viruses initially discovered in 2008. They are known to infect several avian orders. Bornaviruses of parrots and related species (Psittaciformes) are causative agents of proventricular dilatation disease, a chronic and often fatal neurologic disease widely distributed in captive psittacine populations. Although knowledge has considerably increased in the past years, many aspects of the biology of avian bornaviruses are still undiscovered. In particular, the precise way of transmission remains unknown. Aims and Methods In order to collect further information on the epidemiology of bornavirus infections in birds we collected samples from captive and free-ranging aquatic birds (n = 738) and Passeriformes (n = 145) in Germany and tested them for the presence of bornaviruses by PCR assays covering a broad range of known bornaviruses. We detected aquatic bird bornavirus 1 (ABBV-1) in three out of 73 sampled free-ranging mute swans (Cygnus olor) and one out of 282 free-ranging Eurasian oystercatchers (Haematopus ostralegus). Canary bornavirus 1 (CnBV-1), CnBV-2 and CnBV-3 were detected in four, six and one out of 48 captive common canaries (Serinus canaria forma domestica), respectively. In addition, samples originating from 49 bornavirus-positive captive Psittaciformes were used for determination of parrot bornavirus 2 (PaBV-2) and PaBV-4 sequences. Bornavirus sequences compiled during this study were used for phylogenetic analysis together with all related sequences available in GenBank. Results of the Study Within ABBV-1, PaBV-2 and PaBV-4, identical or genetically closely related bornavirus sequences were found in parallel in various different avian species, suggesting that interspecies transmission is frequent relative to the overall transmission of these viruses. Our results argue for an important role of horizontal transmission, but do not exclude the additional possibility of vertical transmission. Furthermore we defined clearly separated sequence clusters within several avian bornaviruses, providing a basis for an improved interpretation of transmission events within and between wild bird populations and captive bird collections

    The impact of candidate selection rules and electoral vulnerability on legislative behaviour in comparative perspective

    Get PDF
    Legislators are political actors whose main goal is to get re‐elected. They use their legislative repertoire to help them cater to the interests of their principals. It is argued in this article that we need to move beyond treating electoral systems as monolithic entities, as if all legislators operating under the same set of macro‐rules shared the same set of incentives. Rather, we need to account for within‐system variation – namely, candidate selection rules and individual electoral vulnerability. Using a most different systems design, Germany, Ireland and Portugal are leveraged with both cross‐system and within‐system variation. An original dataset of 345,000 parliamentary questions is used. Findings show that candidate selection rules blur canonical electoral system boundaries. Electoral vulnerability has a similar effect in closed‐list and mixed systems, but not in preferential voting settings.info:eu-repo/semantics/publishedVersio
    • 

    corecore