65 research outputs found

    Spatial representation of temporal information through spike timing dependent plasticity

    Get PDF
    We suggest a mechanism based on spike time dependent plasticity (STDP) of synapses to store, retrieve and predict temporal sequences. The mechanism is demonstrated in a model system of simplified integrate-and-fire type neurons densely connected by STDP synapses. All synapses are modified according to the so-called normal STDP rule observed in various real biological synapses. After conditioning through repeated input of a limited number of of temporal sequences the system is able to complete the temporal sequence upon receiving the input of a fraction of them. This is an example of effective unsupervised learning in an biologically realistic system. We investigate the dependence of learning success on entrainment time, system size and presence of noise. Possible applications include learning of motor sequences, recognition and prediction of temporal sensory information in the visual as well as the auditory system and late processing in the olfactory system of insects.Comment: 13 pages, 14 figures, completely revised and augmented versio

    Action modulates object-based selection

    Get PDF
    Cueing attention to one part of an object can facilitate discrimination in another part (Experiment 1 [Duncan, j. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501-517]; [Egly, R., Driver, J., and Rafal, R. D. (1994). Shifting visual attention between objects and locations: evidence from normal and parietal lesion divisions. Journal of Experimental Psychology: Human Perception and Performance, 123, 161-177]). We show that this object-based mediation of attention is disrupted when a pointing movement is prepared to the cued part; when a pointing response is prepared to a part of an object, discrimination does not differ between (i) stimuli at locations in the same object but distant to the part where the pointing movement is programmed and (ii) stimuli at locations equidistant from the movement but outside the object (Experiment 2). This remains true even when the pointing movement cannot be performed without first coding the whole object (Experiment 3). Our results indicate that pointing either (i) emphasizes spatial selection at the expense of object-based selection, or (ii) changes the nature of the representations(s) mediating perceptual selection. In addition, the results indicate that there can be a distinct effect on attention of movement to a specific location, separate from the top-down cueing of attention to another position (Experiment 3). Our data highlight the itneractivity between perception and action

    “Nonsense Rides Piggyback on Sensible Things”: The Past, Present, and Future of Graphology

    Get PDF
    “Nonsense rides piggyback on sensible things”, declares professional sceptic and questioned-document analyst Joe Nickell concerning graphology. This chapter examines graphology’s enduring allure and reach, despite its controversies, and considers its relationship with other types of handwriting analysis. It first asks: is it possible to metaphorically “dissect” the page of handwritten texts, to scrutinize writing as a “medical paratext” rich in information about the writer’s state of health? It then interrogates the nature of the connection between physical and mental states and handwriting. It demonstrates how academics are going “back to basics” with their enquiries into individual difference and handwriting features, and how digital methodologies are contributing to this. Thus, this chapter is an updated study of graphology, providing a wider understanding of the concept of the paratext by considering the information captured in handwriting in the context of a digital age

    Diverse M-Best Solutions by Dynamic Programming

    Get PDF
    Many computer vision pipelines involve dynamic programming primitives such as finding a shortest path or the minimum energy solution in a tree-shaped probabilistic graphical model. In such cases, extracting not merely the best, but the set of M-best solutions is useful to generate a rich collection of candidate proposals that can be used in downstream processing. In this work, we show how M-best solutions of tree-shaped graphical models can be obtained by dynamic programming on a special graph with M layers. The proposed multi-layer concept is optimal for searching M-best solutions, and so flexible that it can also approximate M-best diverse solutions. We illustrate the usefulness with applications to object detection, panorama stitching and centerline extraction

    Corticolimbic Expression of TRPC4 and TRPC5 Channels in the Rodent Brain

    Get PDF
    The canonical transient receptor potential (TRPC) channels are a family of non-selective cation channels that are activated by increases in intracellular Ca2+ and Gq/phospholipase C-coupled receptors. We used quantitative real-time PCR, in situ hybridization, immunoblots and patch-clamp recording from several brain regions to examine the expression of the predominant TRPC channels in the rodent brain. Quantitative real-time PCR of the seven TRPC channels in the rodent brain revealed that TRPC4 and TRPC5 channels were the predominant TRPC subtypes in the adult rat brain. In situ hybridization histochemistry and immunoblotting further resolved a dense corticolimbic expression of the TRPC4 and TRPC5 channels. Total protein expression of HIP TRPC4 and 5 proteins increased throughout development and peaked late in adulthood (6–9 weeks). In adults, TRPC4 expression was high throughout the frontal cortex, lateral septum (LS), pyramidal cell layer of the hippocampus (HIP), dentate gyrus (DG), and ventral subiculum (vSUB). TRPC5 was highly expressed in the frontal cortex, pyramidal cell layer of the HIP, DG, and hypothalamus. Detailed examination of frontal cortical layer mRNA expression indicated TRPC4 mRNA is distributed throughout layers 2–6 of the prefrontal cortex (PFC), motor cortex (MCx), and somatosensory cortex (SCx). TRPC5 mRNA expression was concentrated specifically in the deep layers 5/6 and superficial layers 2/3 of the PFC and anterior cingulate. Patch-clamp recording indicated a strong metabotropic glutamate-activated cation current-mediated depolarization that was dependent on intracellular Ca2+and inhibited by protein kinase C in brain regions associated with dense TRPC4 or 5 expression and absent in regions lacking TRPC4 and 5 expression. Overall, the dense corticolimbic expression pattern suggests that these Gq/PLC coupled nonselective cation channels may be involved in learning, memory, and goal-directed behaviors

    The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants

    Get PDF
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19)

    The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants

    Get PDF
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19)

    Markov logic mixtures of Gaussian processes: Towards machines reading regression data

    No full text
    We propose a novel mixtures of Gaussian processes model in which the gating function is interconnected with a probabilistic logical model, in our case Markov logic networks. In this way, the resulting mixed graphical model, called Markov logic mixtures of Gaussian processes (MLxGP), solves joint Bayesian non-parametric regression and probabilistic relational inference tasks. In turn, MLxGP facilitates novel, interesting tasks such as regression based on logical constraints or drawing probabilistic logical conclusions about regression data, thus putting "machines reading regression data" in reach
    corecore