44 research outputs found

    Thermoelectric and microbattery hybrid system with its power management

    Get PDF
    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920)International audienceIntegration of a power source with a MEMS to obtain an autonomous or remote system is a very challenging task. Such a device is currently being developed. It consists in hybriding an energy storage system (thin film solid state battery) with a scavenging energy system (thermogenerator) in a very small volume. It requires also power management to both control charge of the battery by the thermogenerator and discharge of the battery by the load, i.e. a sensor for instance

    Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery

    Get PDF
    International audienceThe phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of Li(x)CoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits

    Maintaining sagittal plane balance compromises frontal plane balance during reactive stepping in people post-stroke

    Get PDF
    Background. Maintaining balance in response to perturbations during walking often requires the use of corrective responses to keep the center of mass within the base of support. The relationship between the center of mass and base of support is often quantified using the margin of stability. Although people post-stroke increase the margin of stability following perturbations, control deficits may lead to asymmetries in regulation of margins of stability, which may also cause maladaptive coupling between the sagittal and frontal planes during balance-correcting responses. Methods. We assessed how paretic and non-paretic margins of stability are controlled during recovery from forward perturbations and determined how stroke-related impairments influence the coupling between the anteroposterior and mediolateral margins of stability. Twenty-one participants with post-stroke hemiparesis walked on a treadmill while receiving slip-like perturbations on both limbs at foot-strike. We assessed anteroposterior and mediolateral margins of stability before perturbations and during perturbation recovery. Findings. Participants walked with smaller anteroposterior and larger mediolateral margins of stability on the paretic versus non-paretic sides. When responding to perturbations, participants increased the anteroposterior margin of stability bilaterally by extending the base of support and reducing the excursion of the extrapolated center of mass. The anteroposterior and mediolateral margins of stability in the paretic limb negatively covaried during reactive steps such that increases in anteroposterior were associated with reductions in mediolateral margins of stability. Interpretation. Balance training interventions to reduce fall risk post-stroke may benefit from incorporating strategies to reduce maladaptive coupling of frontal and sagittal plane stability

    Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC.</p> <p>Methods</p> <p>To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients.</p> <p>Results</p> <p>Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (<it>P </it>= 0.041), increased lymph node metastasis (<it>P </it>= 0.001), less differentiation (<it>P </it>= 0.005), increased recurrence (<it>P </it>= 0.038) and shorter survival (<it>P </it>= 0.004) of the patients.</p> <p>Conclusion</p> <p>In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC.</p

    p53 amyloid formation leading to its loss of function: implications in cancer pathogenesis

    No full text
    The transcriptional regulator p53 has an essential role in tumor suppression. Almost 50% of human cancers are associated with the loss of p53 functions, where p53 often accumulates in the nucleus as well as in cytoplasm. Although it has been previously suggested that amyloid formation could be a cause of p53 loss-of-function in subset of tumors, the characterization of these amyloids and its structure-function relationship is not yet established. In the current study, we provide several evidences for the presence of p53 amyloid formation (in human and animal cancer tissues); along with its isolation from human cancer tissues and the biophysical characterization of these tissue-derived fibrils. Using amyloid seed of p53 fragment (P8, p53(250-257)), we show that p53 amyloid formation in cells not only leads to its functional inactivation but also transforms it into an oncoprotein. The in vitro studies further show that cancer-associated mutation destabilizes the fold of p53 core domain and also accelerates the aggregation and amyloid formation by this protein. Furthermore, we also show evidence of prion-like cell-to-cell transmission of different p53 amyloid species including full-length p53, which is induced by internalized P8 fibrils. The present study suggests that p53 amyloid formation could be one of the possible cause of p53 loss of function and therefore, inhibiting p53 amyloidogenesis could restore p53 tumor suppressor functions

    The Newly Discovered Parkinson’s Disease Associated Finnish Mutation (A53E) Attenuates α‑Synuclein Aggregation and Membrane Binding

    No full text
    α-Synuclein (α-Syn) oligomerization and amyloid formation are associated with Parkinson’s disease (PD) pathogenesis. Studying familial α-Syn mutants associated with early onset PD has therapeutic importance. Here we report the aggregation kinetics and other biophysical properties of a newly discovered PD associated Finnish mutation (A53E). Our <i>in vitro</i> study demonstrated that A53E attenuated α-Syn aggregation and amyloid formation without altering the major secondary structure and initial oligomerization tendency. Further, A53E showed reduced membrane binding affinity compared to A53T and WT. The present study would help to delineate the role of A53E mutation in early onset PD pathogenesis
    corecore