100 research outputs found
Short photoperiod-induced decrease of histamine H3 receptors facilitates activation of hypothalamic neurons in the Siberian Hamster
Nonhibernating seasonal mammals have adapted to temporal changes in food availability through behavioral and physiological mechanisms to store food and energy during times of predictable plenty and conserve energy during predicted shortage. Little is known, however, of the hypothalamic neuronal events that lead to a change in behavior or physiology. Here we show for the first time that a shift from long summer-like to short inter-like photoperiod, which induces physiological adaptation to winter in the Siberian hamster, including a body weight decrease of up to 30%, increases neuronal activity in the dorsomedial region of the arcuate nucleus (dmpARC) assessed by electro physiological patch-clamping recording. Increased neuronal activity in short days is dependent on a photoperiod-driven down-regulation of H3 receptor expression and can be mimicked in long-day dmpARC neurons by the application of the H3 receptor antagonist, clobenproprit. Short-day activation of dmpARC neurons results in increased c-Fos expression. Tract tracing with the trans-synaptic retrograde tracer, pseudorabies virus, delivered into adipose tissue reveals a multisynaptic neuronal sympathetic outflow from dmpARC to white adipose tissue. These data strongly suggest that increased activity of dmpARC neurons, as a consequence of down-regulation of the histamine H3 receptor, contributes to the physiological adaptation of body weight regulation in seasonal photoperiod
Profile instabilities of the millisecond pulsar PSR J1022+1001
We present evidence that the integrated profiles of some millisecond pulsars
exhibit severe changes that are inconsistent with the moding phenomenon as
known from slowly rotating pulsars. We study these profile instabilities in
particular for PSR J1022+1001 and show that they occur smoothly, exhibiting
longer time constants than those associated with moding. In addition, the
profile changes of this pulsar seem to be associated with a relatively
narrow-band variation of the pulse shape. Only parts of the integrated profile
participate in this process which suggests that the origin of this phenomenon
is intrinsic to the pulsar magnetosphere and unrelated to the interstellar
medium. A polarization study rules out profile changes due to geometrical
effects produced by any sort of precession. However, changes are observed in
the circularly polarized radiation component. In total we identify four
recycled pulsars which also exhibit instabilities in the total power or
polarization profiles due to an unknown phenomenon (PSRs J1022+1001,
J1730-2304, B1821-24, J2145-0750).
The consequences for high precision pulsar timing are discussed in view of
the standard assumption that the integrated profiles of millisecond pulsars are
stable. As a result we present a new method to determine pulse times-of-arrival
that involves an adjustment of relative component amplitudes of the template
profile. Applying this method to PSR J1022+1001, we obtain an improved timing
solution with a proper motion measurement of -17 \pm 2 mas/yr in ecliptic
longitude. Assuming a distance to the pulsar as inferred from the dispersion
measure this corresponds to an one-dimensional space velocity of 50 km/s.Comment: 29 pages, 12 figures, accepted for publication in Ap
Giant Pulses -- the Main Component of the Radio Emission of the Crab Pulsar
The paper presents an analysis of dual-polarization observations of the Crab
pulsar obtained on the 64-m Kalyazin radio telescope at 600 MHz with a time
resolution of 250 ns. A lower limit for the intensities of giant pulses is
estimated by assuming that the pulsar radio emission in the main pulse and
interpulse consists entirely of giant radio pulses; this yields estimates of
100 Jy and 35 Jy for the peak flux densities of giant pulses arising in the
main pulse and interpulse, respectively. This assumes that the normal radio
emission of the pulse occurs in the precursor pulse. In this case, the
longitudes of the giant radio pulses relative to the profile of the normal
radio emission turn out to be the same for the Crab pulsar and the millisecond
pulsar B1937+21, namely, the giant pulses arise at the trailing edge of the
profile of the normal radio emission. Analysis of the distribution of the
degree of circular polarization for the giant pulses suggests that they can
consist of a random mixture of nanopulses with 100% circular polarization of
either sign, with, on average, hundreds of such nanopulses within a single
giant pulse.Comment: 13 pages, 6 figures (originally published in Russian in
Astronomicheskii Zhurnal, 2006, vol. 83, No. 1, pp. 62-69) translated by
Denise Gabuzd
Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array
This paper presents a search for radio transients at a frequency of 73.8 MHz
(4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength
Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope,
located on the site of the Very Large Array in New Mexico. The field of view of
the individual dipoles was essentially the entire sky, and the number of
dipoles was sufficiently small that a simple software correlator could be used
to make all-sky images. From 2006 October to 2007 February, we conducted an
all-sky transient search program, acquiring a total of 106 hr of data; the time
sampling varied, being 5 minutes at the start of the program and improving to 2
minutes by the end of the program. We were able to detect solar flares, and in
a special-purpose mode, radio reflections from ionized meteor trails during the
2006 Leonid meteor shower. We detected no transients originating outside of the
solar system above a flux density limit of 500 Jy, equivalent to a limit of no
more than about 10^{-2} events/yr/deg^2, having a pulse energy density >~ 1.5 x
10^{-20} J/m^2/Hz at 73.8 MHz for pulse widths of about 300 s. This event rate
is comparable to that determined from previous all-sky transient searches, but
at a lower frequency than most previous all-sky searches. We believe that the
LWDA illustrates how an all-sky imaging mode could be a useful operational
model for low-frequency instruments such as the Low Frequency Array, the Long
Wavelength Array station, the low-frequency component of the Square Kilometre
Array, and potentially the Lunar Radio Array.Comment: 20 pages; accepted for publication in A
Fecundability among newly married couples in agricultural villages in Palestine: a prospective study
- …