3,589 research outputs found

    High resolution spectroscopy of the three dimensional cosmic web with close QSO groups

    Get PDF
    We study the three-dimensional distribution of matter at z~2 using high resolution spectra of QSO pairs and simulated spectra drawn from cosmological hydro-dynamical simulations. We present a sample of 15 QSOs, corresponding to 21 baselines of angular separations evenly distributed between ~1 and 14 arcmin, observed with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the European Southern Observatory-Very Large Telescope (ESO-VLT). The observed correlation functions of the transmitted flux in the HI Lya forest transverse to and along the line of sight are in agreement, implying that the distortions in redshift space due to peculiar velocities are relatively small and - within the relatively large error bars - not significant. The clustering signal is significant up to velocity separations of ~300 km/s, corresponding to about 5 h^{-1} comoving Mpc. Compatibility at the 2 sigma level has been found both for the Auto- and Cross-correlation functions and for the set of the Cross correlation coefficients. The analysis focuses in particular on two QSO groups of the sample. Searching for alignments in the redshift space between Lya absorption lines belonging to different lines of sight, it has been possible to discover the presence of a wide HI structures extending over about ten Mpc in comoving space, and give constraints on the sizes of two cosmic under-dense regions in the intergalactic medium.Comment: Accepted by MNRAS, version matching the published on

    Dissecting the effects of free fatty acids on the thermodynamic stability of complex model membranes mimicking insulin secretory granules

    Get PDF
    A stepwise micro-DSC study of Small, Large and Giant Unilamellar Vesicles prepared as pure and mixed systems of DMPC, DPPC, DSPC and DOPC was performed, achieving the preparation of final model membranes whose phospholipid compositions represent the 75% in terms of the phospholipids tails and the 50% headgroups of the Insulin Secretory Granules (vesicles located in the pancreatic Langerhans \u3b2-cells and which are responsible for insulin and amylin storage and secretion in response to nutrient intake). Moreover, the effect of Free Fatty Acids, whose levels are recurrently altered in diabetic and/or obese subjects, on the thermodynamic stability of the final membranes was eventually investigated. The results allowed to discriminate each single thermodynamic contribution among the main factors that dictate the overall thermodynamic stability of these complex unilamellar systems evidencing mainly entropic effects hierarchically summarized as phospholipid unsaturations > phospholipid tail length > membrane curvature. The effect of the Free Fatty Acids highlighted a strong stabilizing effect on the membranes as well as more pronounced phase segregations in the case of saturated acids (palmitic and stearic), whereas the opposite effect was observed in the case of an unsaturated one (oleic)

    Probing 3-D matter distribution at z~2 with QSO multiple lines of sight

    Full text link
    We investigate the 3-D matter distribution at z~2 with high resolution (R ~ 40000) spectra of QSO pairs and groups obtained with the UVES spectrograph at ESO VLT. Our sample is unique for the number density of objects and the variety of separations, between 0.5 and 7 proper Mpc. We compute the real space cross-correlation function of the Lyman-alpha forest transmitted fluxes. There is a significant clustering signal up to ~2 proper Mpc, which is still present when absorption lines with high column density (log N > 13.8) are excluded.Comment: Poster paper presented at the IAU Colloquium #199 on "Probing Galaxies through Quasar Absorption Lines" held in Shanghai, China from March 14th to 18th, 200

    Tomography of the intergalactic medium with Ly-alpha forests in close QSO pairs

    Full text link
    We study the three-dimensional distribution of non virialised matter at z~2 using high resolution spectra of QSO pairs and simulated spectra drawn from cosmological hydrodynamical simulations. We have collected the largest sample of QSO pairs ever observed with UVES at the ESO-VLT, with angular separations between ~1 and 14 arcmin. The observed correlation functions of the transmitted flux in the HI Lyman alpha forest along and transverse to the lines of sight are in good agreement implying that the distortions in redshift space due to peculiar velocities are small. The clustering signal is significant up to velocity separations of ~200 km/s, or about 3 h^{-1} comoving Mpc. The regions at lower overdensity (rho/ < 6.5) are still clustered but on smaller scales (Delta v < 100 km/s). The observed and simulated correlation functions are compatible at the 3 sigma level. A better concordance is obtained when only the low overdensity regions are selected for the analysis or when the effective optical depth of the simulated spectra is increased artificially, suggesting a deficiency of strong lines in the simulated spectra. We found that also a lower value of the power-law index of the temperature-density relation for the Lyman alpha forest gas improves the agreement between observed and simulated results. If confirmed, this would be consistent with other observations favouring a late HeII reionization epoch (at z~3). We remark the detection of a significant clustering signal in the cross correlation coefficient at a transverse velocity separation Delta v_{\perp} ~500 km/s whose origin needs further investigation.Comment: Accepted for publication in MNRAS, revised version matching the accepted on

    Effects of disorder on the optical gap of (Zn,Mg)(S,Se)

    Get PDF
    The electronic properties and optical gap of (Zn,Mg)(S,Se) wide-gap solid solutions are studied using ab initio techniques and starting from the previously determined atomistic structure of the alloy. Compositional disorder is shown to close the gap substantially with respect to the predictions of the virtual-crystal approximation. The bowing of the fundamental gap versus composition predicted by our calculations is in very good agreement with experiments available for the Zn(S,Se) pseudobinary alloy. At temperatures typical of molecular-beam epitaxy growth, the quaternary alloy displays a rather large amount of short-range order whose effect is to slightly but unmistakably open the gap. Our results agree well with recent experimental data for the quaternary alloy. (C) 1999 American Institute of Physics. [S0003-6951(99)02044-6]

    Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia

    Full text link
    We determine, by means of density functional theory, the stability and the structure of graphene nanoribbon (GNR) edges in presence of molecules such as oxygen, water, ammonia, and carbon dioxide. As in the case of hydrogen-terminated nanoribbons, we find that the most stable armchair and zigzag configurations are characterized by a non-metallic/non-magnetic nature, and are compatible with Clar's sextet rules, well known in organic chemistry. In particular, we predict that, at thermodynamic equilibrium, neutral GNRs in oxygen-rich atmosphere should preferentially be along the armchair direction, while water-saturated GNRs should present zigzag edges. Our results promise to be particularly useful to GNRs synthesis, since the most recent and advanced experimental routes are most effective in water and/or ammonia-containing solutions.Comment: accepted for publication in PR

    Structure, Stability, Edge States and Aromaticity of Graphene Ribbons

    Full text link
    We determine the stability, the geometry, the electronic and magnetic structure of hydrogen-terminated graphene-nanoribbons edges as a function of the hydrogen content of the environment by means of density functional theory. Antiferromagnetic zigzag ribbons are stable only at extremely-low ultra-vacuum pressures. Under more standard conditions, the most stable structures are the mono- and di-hydrogenated armchair edges and a zigzag edge reconstruction with one di- and two mono-hydrogenated sites. At high hydrogen-concentration ``bulk'' graphene is not stable and spontaneously breaks to form ribbons, in analogy to the spontaneous breaking of graphene into small-width nanoribbons observed experimentally in solution. The stability and the existence of exotic edge electronic-states and/or magnetism is rationalized in terms of simple concepts from organic chemistry (Clar's rule)Comment: 4 pages, 3 figures, accepted for publication by Physical Review Letter

    A new and efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy

    Full text link
    Using a super-operator formulation of linearized time-dependent density-functional theory, the dynamical polarizability of a system of interacting electrons is given a matrix continued-fraction representation whose coefficients can be obtained from the non-symmetric block-Lanczos method. The resulting algorithm allows for the calculation of the {\em full spectrum} of a system with a computational workload which is only a few times larger than that needed for {\em static} polarizabilities within time-independent density-functional perturbation theory. The method is demonstrated with the calculation of the spectrum of benzene, and prospects for its application to the large-scale calculation of optical spectra are discussed.Comment: 4 pages, 2 figure

    Status of the Golden Eagle Aquila chrysaetos in Sicily

    Get PDF
    In the present work, we review all the relevant information since the first Regional Atlas of breeding birds (Massa 1985), and we add field data on the species occurrence and site occupancy relative to the period January 2014-December 2016, in order to update the species’ status in Sicily
    • …
    corecore