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Abstract: 

A stepwise micro-DSC study of Small, Large and Giant Unilamellar Vesicles prepared as pure 

and mixed systems of DMPC, DPPC, DSPC and DOPC was performed, achieving the preparation 

of final model membranes whose phospholipid compositions represent the 75% in terms of the 

phospholipids tails and the 50% headgroups of the Insulin Secretory Granules (vesicles located in 

the pancreatic Langerhans β-cells and which are responsible for insulin and amylin storage and 

secretion in response to nutrient intake). Moreover, the effect of Free Fatty Acids, whose levels are 

recurrently altered in diabetic and/or obese subjects, on the thermodynamic stability of the final 

membranes was eventually investigated. The results allowed to discriminate each single 

thermodynamic contribution among the main factors that dictate the overall thermodynamic 

stability of these complex unilamellar systems evidencing mainly entropic effects hierarchically 

summarized as phospholipid unsaturations > phospholipid tail length > membrane curvature. The 

effect of the Free Fatty Acids highlighted a strong stabilizing effect on the membranes as well as 

more pronounced phase segregations in the case of saturated acids (palmitic and stearic), whereas 

the opposite effect was observed in the case of an unsaturated one (oleic).  
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1. Introduction 

Free Fatty Acids (FFAs) have been shown to be involved in several membrane-mediated 

cellular processes as membrane-bound enzyme activity [1], lipid-assisted protein transport across 

the bilayer [2], fusion of lipid vesicles and cells [3] and/or alteration of the microdomains of cell 

phospholipid bilayers as well as their physical properties [4,5]. Moreover, they also act as signalling 

molecules for several cell mechanisms [6,7], for instance insulin secretion [8]. Of course, the effect 

of FFAs on membranes and other cellular processes is dependent on their structural and chemical 

nature [9–12]. 

Several studies are reported to highlight the FFAs-membrane interaction mainly using 

spectroscopic, imaging, molecular dynamics and/or theoretical approaches [13–16], but, to our 

knowledge, only few works are devoted to a thermodynamic characterization of the role of the 

FFAs on the overall membrane stability. Moreover, most of these studies, including the calorimetric 

approach [17,18], describe model systems whose, for instance, do not resemble the complexity of 

the composition of real biological vesicles [19]. Indeed, each modification in lipid composition and 

morphological characteristics might produce modifications of the molecular structure of such 

systems, which in turn might lead to variations of their physicochemical properties [20–22].  

In this work we propose a calorimetric study of the influence of FFAs on the membrane 

thermodynamic stability [11,23,24] discriminating compositional and morphological aspects by 

means of model membranes with progressive complexity aimed to simulate a real membrane, 

namely the phospholipid bilayer of the Insulin Secretory Granules (ISGs). ISGs are vesicles 

(average size of about 0.4 µm) located in the pancreatic Langerhans β-cells and which are 

responsible for insulin and amylin storage and secretion in response to nutrient intake [25]. Altered 

FFAs levels are recurrent in diabetic and/or obese subjects and plasma FFAs concentration is 

generally high in both with levels that tend to be increasingly higher with the increase of weight 

[26]. Specifically for Type 2 Diabetes Mellitus (T2DM), studies regarding the possible involvement 

of FFAs in the onset and/or progression of the disease are widely reported in the literature, referring 

both to their possible involvement in altered metabolic pathways [27,28] and to the direct action of 

FFAs on membranes [29]. Moreover, the action of FFAs has also been hypothesized to play a role 

in the interaction of amylin, an amyloidogenic protein, with cell membranes likely leading to the 

pancreatic β-cells failure by apoptosis [30].  

In this frame, in order to preliminary discriminate the morphological and compositional effects 

on the overall membrane stability, we performed a thermodynamic study of different Small, Large 

and Giant Unilamellar Vesicles (SUVs, LUVs and GUVs) at physiological pH by using the micro-

DSC technique. The phase behaviour of such vesicles prepared as pure and mixed system of 



DMPC, DPPC, DSPC and DOPC was studied, achieving the preparation of final model membranes 

whose phospholipids proportionally follow their abundancy [19] and represent the 75% of the 

phospholipids’ tails and the 50% of the headgroups in real ISGs [31]. Indeed, in order to 

discriminate the single thermodynamic contributions on some of the main parameters that dictate 

the thermodynamic stability of unilamellar membranes, namely vesicle size, tails length, presence 

of unsaturations and components’ molar ratio, for this paper all the constituents were chosen with 

the same headgroup (choline). The effect of three different FFAs, such as palmitic, stearic and oleic 

acids, added in different amounts to the final systems was eventually investigated highlighting a 

hierarchy of the interactions involved.   

 

 

2. Materials and methods 

2.1. Materials 

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC) powders were purchased from Avanti Polar Lipids (purity 

certified by the supplier >99%), whereas palmitic acid (PA), stearic acid (SA) and oleic acid (OA), 

as well as the other chemicals, were obtained from Sigma Aldrich. The lipids were of the highest 

available purity (≥99%) and were used without further purification. All solvents were of analytical 

grade. 

 

2.2. Liposomes preparation 

2.2.1. Preparation of Giant Unilamellar Vesicles (GUVs) 

GUVs were prepared following a procedure described elsewhere [32]. Briefly, the 

phospholipids were dissolved in chloroform obtaining a 2mM concentration. A volume equal to 

1mL of this solution was transferred in a round-bottom flask where, subsequently, 7mL of 10mM 

phosphate buffer (pH 7.4) were added. The organic solvent was removed through rotary 

evaporation (Heidolph Laborota 4000 efficient, WB eco, Schwabach, Germany) under reduced 

pression at 40°C and 40rpm, obtaining about 6.0mL of GUVs dispersion at about 0.3mM lipid 

concentration.  

 

2.2.2. Preparation of Large Unilamellar Vesicles (LUVs) 

Large vesicles were obtained from GUVs dispersions, which were extruded through 

polycarbonate filters (pore size of 400nm) mounted on a heated mini-extruder (Avanti Polar Lipids, 



Alabaster, AL, USA) fitted with two 1mL gastight syringes (Hamilton, Reno, NV, USA). The 

extrusion from already unilamellar giant vesicles assured us the unilamellarity of the large ones 

(supplementary material). An odd number of passages, usually 41, was performed to avoid any 

contamination by liposomes that might have not passed through the filters [33]. 

 

2.2.3. Preparation of Small Unilamellar Vesicles (SUVs) and Free Fatty Acids (FFAs) addition 

Liposomes were prepared through thin-film hydration [34]. An amount of about 20mg 

phospholipids was dissolved in 2mL of chloroform. The solvent was removed through rotary 

evaporation (Heidolph Laborota 4000 efficient, WB eco, Schwabach, Germany) at 40°C and the 

films were first kept under vacuum for at least 3 hours to remove solvent traces and then aged 

overnight at 4°C. For the hydration, 10mM phosphate buffer (pH 7.4) at a temperature above the 

gel-to-liquid-crystal transition of the lipid system was added up to a 10mg lipid/mL concentration. 

The obtained mixture was vortexed and slowly stirred in water bath, at the same temperature chosen 

for the buffer, for about an hour until the induction of a homogenous emulsion. Extrusion was 

performed through 100nm polycarbonate filters following the same precautions previously 

described. 

As for FFAs-containing membranes, the acids were mixed with phospholipids prior to dissolve 

them in chloroform. 

 

2.2.4. Preparation of Multilamellar Lipid Bilayers (MLBs)  

MLBs samples were prepared by simply dispersing the adequate lipid powder amounts in 

10mM phosphate buffer achieving a 0.2M lipid concentration. 

 

2.3. Spectroscopic characterization 

The hydrodynamic diameter of all liposomal formulations was measured by Dynamic Light 

Scattering (DLS). Amounts of 100μL of SUVs preparations and 670μL of LUVs and GUVs 

preparations were diluted in buffer up to 3mL after the annealing of the dispersions. Measurements 

were performed at 25°C through a light-scattering instrument (Litesizer
TM

 500, Anton Paar, Graz, 

Austria) in side-scatter mode for SUVs and LUVs dispersion, whereas the back-scatter mode was 

used for GUVs dispersions. The results permitted to verify the specifications about the 

polycarbonate filters’ pore sizes used for the SUVs and LUVs extrusions [33] and to verify that the 

GUVs sizes was higher than 1µm (supplementary material). 

 

2.4. Thermal analysis measurements 



Calorimetry was used to determine the stability of the membranes with specific reference to the 

transitions of the lipid phases. Micro-DSC was selected as the most suitable technique for liposome 

investigation [23]. The instrument used was a Setaram micro DSCIII (Setaram Instrumentation, 

Caluire, France) operating with 1mL hermetically closed pans at 0.5°C/min scanning rate. After the 

conclusion of the liposomes’ preparation protocols, each dispersion was allowed to anneal for at 

least 30 min at room temperature before launching the DSC measurement. SUVs samples were 

diluted up to 2.5mM phospholipids concentration, also for vesicles which included FFAs, whereas 

GUVs and LUVs suspensions were used without further dilutions (~ 0.3mM). The final 

phospholipid concentration for all kind of vesicles was checked by using the Stewart assay [35]. 

Instead, classic DSC technique was selected to obtain thermograms for Multilamellar Lipid 

Bilayers (MLBs) as references. A PerkinElmer DSC6 (PerkinElmer, Waltham, MA, USA) working 

with hermetically closed pans was used by choosing a 0.5°C/min scanning rate. About 20 mg of 

samples with 0.2M lipid concentration were loaded in the pans for each run. 

The raw data were worked out with the dedicated software “THESEUS” [36]. Briefly, the 

apparent specific heat trace, Cp
app

(T), was scaled to obtain the excess specific heat, Cp
exc

(T), with 

respect to the low temperature lipids state. Due to such a treatment, the area beneath the recorded 

peaks directly corresponded to the relevant transitions enthalpy ΔH° of the lipid phase. Two 

heating-cooling cycles were applied to each sample. All transitions were reversible and the second 

cycle heating curves were considered to evaluate the parameters of the thermotropic transitions 

observed. Errors were evaluated on the basis of at least three replicas. 

In case of single main peaks, the main transition temperature, Tm, is usually identified as the 

temperature of the calorimetric peak maximum, Tmax, and the transition cooperativity is quantified 

by means of ΔT1/2 (full width at half maximum) that is of the order of 0.5°C for MLBs, while the 

unilamellar liposomes’ values are generally 2-3 times higher according to the literature [23]. 

However, in this work we are often dealing with complex signals. In order to describe the overall 

stability of the systems, in addition to Tmax we propose the use of the transition average temperature, 

  , defined here as 

     
  

  

        

being T0 and Tf, the initial and final limit of the observable peak and where the frequency function 

f(T) is just the normalized calorimetric peak distribution 

 

     
  

      

   
    

 



Furthermore, to better estimate the cooperativity in multicomponent and/or multiphasic samples, we 

propose an Average Cooperativity Index, ACI, defined here as 

 

                    
  

  

    

This approach is just a classical statistical distribution approach applied to the calorimetric signal 

(for instance, ACI coincides with the standard deviation σ in the case of a gaussian distribution) and 

just for comparison we mention that in case of single peaks, as for the MLBs, a ΔT1/2 value of 0.5 

°C corresponds to ~ 0.2 °C in ACI terms, whereas the           difference represents a peak 

asymmetry index. 

 

3. Results and discussion 

3.1. One-component systems 

The DSC thermograms for DMPC, DPPC and DSPC samples as MLBs, GUVs, LUVs and 

SUVs are shown in Fig. 1 (detailed figures are reported in supplementary material).   

 

Fig1.approximately.here 

 

In particular, the comparison between the thermograms of one-component systems as Multilamellar 

Bilayers (MLBs) and Unilamellar Vesicles is shown in Fig. 1a (LUVs are reported as an example). 

We observed that the phenomena involved were totally reversible and the cooling traces evidenced 

hysteresis effects typical of “Ising” systems [37]. As regards the MLBs, we observed the distinctive 

sharp signal related to the main transition from the gel phase to the liquid crystal phase, preceded by 

the typical smaller and broader pretransition [23]. Moreover, the temperature ranges covered by 

these signals and the corresponding main transition enthalpies followed the trend outlined by the 

phospholipids’ chain lengths increment (14, 16, 18 carbon atoms for DMPC, DPPC and DSPC 

respectively) [38,39]. The Unilamellar Vesicles followed the same trend as regards the temperature 

ranges but, in this case, the signals were evidently much broader in line with the literature [23]. 

Indeed, it is well known that the cooperativity of the phase transition depends on the geometry of 

the membrane and decreases as the vesicle curvature increases [23,40]. Such low cooperativity 

reflects a dispersion of lipid regions (with different stability and cooperativity parameters) that 

might be further affected by the presence of perturbing agents.  

In any case, the main transition enthalpies remained correspondingly unaffected indicating that such 

curvature effects were mostly of entropic nature in line with previous studies [23,39–42].  



We may note here that, according to the literature [43], the curvature effects to the overall 

membrane stability for one-component systems seems are enhanced in vesicles smaller than 70nm, 

despite in some cases discrepancies emerges, especially as for the enthalpic contribution [44]. 

However, these systems are not solutions but suspensions and experimental conditions, in some 

cases, may play a role in the DSC profiles [23]. Here, the measures of one-component systems were 

performed as reference for direct comparison with the more complex systems’ micro-DSC curves 

produced at the same experimental conditions.   

In summary, for all the forms of the systems, as overall main transition values we obtained ΔH° = 

(44 ± 2) kJ·mol
-1

 for DSPC, ΔH° = (35 ± 2) kJ·mol
-1

 for DPPC, and ΔH° = (24 ± 2) kJ·mol
-1

 for 

DMPC. The pretransition was better detected in the case of MLBs (ΔH° = (7 ± 1) kJ·mol
-1

, ΔH° = 

(5 ± 1) kJ·mol
-1

 and ΔH° = (4 ± 1) kJ·mol
-1

 for DSPC, DPPC and DMPC, respectively) whereas 

they became less evident going from GUVs, LUVs to SUVs [45,46]. 

As regards the variations in Tmax among different bilayer curvatures, we remind here that, in the 

case of the extruded vesicles, we are in presence of large asymmetric DSC profiles and the Tmax of 

the curve is an apparent quantity and may not be directly correlated with a Tm corresponding to an 

"all-in-one” gel-to-liquid crystalline transition. In any case, the differences of Tmax among different 

bilayer curvatures for the same one-component system were in the narrow range of ± 0.2°C 

(including experimental error) with respect to the average Tm between the four bilayer forms for the 

same system. In summary, for all the forms of the systems, we obtained Tmax = (54.9 ± 0.2) °C for 

DSPC and Tmax = (41.6 ± 0.2) °C for DPPC and Tmax = (24.0 ± 0.2) °C for DMPC. 

The micro-DSC thermograms for the same pure systems as GUVs and SUVs are reported in 

Fig. 1b in order to better evidence the curvature entropic effects between pure unilamellar systems. 

As expected [40], the higher the curvature (SUVs), the lower the cooperativity. In summary, the 

ACI values (see material and methods) we obtained were of the same order for the DSPC, DPPC 

and DMPC systems, namely ~ 0.2 ± 0.1 °C for MLBs, ~ 0.6 ± 0.1 for GUVs, ~ 1.0 ± 0.1 for LUVs 

and ~ 1.2 ± 0.1 for SUVs. 

However, despite these differences are still appreciable comparing unilamellar vesicles with 

different sizes in the cases of one-component systems, different composition ratios for more 

complex membranes might influence such a behaviour. Indeed, our main purpose was to explore the 

thermodynamic behaviour of different and more complex model cell membranes that are as close as 

possible to reality against some perturbing agents, specifically in this case the ISGs against FFAs in 

the frame of T2DM. For this reason, a careful evaluation from a hierarchical point of view of any 

possible phenomenon that might influence the thermodynamic stability of real cell membranes is 

essential. 



 

3.2. Binary systems 

In order to evaluate the contribution of each phospholipid on the thermodynamic stability of a 

hypothetical model membrane, preliminary experiments on binary systems prepared as 1:1 molar 

mixtures of DSPC:DPPC, DPPC:DMPC and DSPC:DMPC were performed for the size border 

systems, i.e. GUVs and SUVs (Fig. 2). The relevant thermodynamic data are reported in Table 1. 

 

Fig2.and.Table1.approximately.here 

 

At a first glance, for phospholipids mixtures with a chain lengths’ deviation of two carbon 

units, i.e. DSPC:DPPC and DPPC:DMPC, we observed a main peak roughly placed in the middle 

of the temperature range defined by the Tmax values of the one-component dispersions (considered 

as references), in line with the literature [38,47]. Such profiles indicate that phospholipids with 

slight differences in tails’ length are in first approximation miscible, i.e. almost thermodynamically 

compatible. However, we may notice broader signals than the references’ profiles, also presenting 

slight shoulders towards the phospholipids with the shortest tails.  

Conversely, in the case of DSPC:DMPC mixture, i.e. phospholipids with a higher chain lengths’ 

deviation (four carbon units), these effects were dramatically enhanced showing a complex 

asymmetric and mainly biphasic signal. Consequently, we may argue that the presence of phase 

separations, i.e. the degree of thermodynamic incompatibility, is strictly related to the lipid 

composition in terms of chain lengths’ deviation [48]. However, we remind that this conclusion 

regards saturated phospholipids with the same headgroup.  

Notwithstanding, the thermograms showed the formation of phases characterized by different lipid 

molar ratios for all the three mixtures. Indeed, a small step at the beginning of the peaks may be 

noticed in all the cases evidencing the presence of phases richer in the lower-Tm phospholipid 

(corresponding to DPPC-rich phase in DSPC:DPPC and to DMPC-rich phase in both DSPC:DMPC 

and DPPC:DMPC). However, regardless of the magnitude of the phase separations characterizing 

such systems, we observed that the lipids reorganization within the vesicles promoted the 

enrichment of the most stable domains and such a detail clearly emerges by the asymmetry of the 

peaks in Fig. 2.  

The overall enthalpies obtained for the three binary mixtures are collected in Table 1 and are 

compared with the respective enthalpy simply arithmetically calculated adding the enthalpy values 

obtained for the main transition in the case of one-component systems considering the composition 

ratio [49]. We observed higher ΔH° than the calculated values for all the systems with deviations of 



about 4-5 kJ·mol
-1

 that are of the order of the pretransition values. Accordingly, we may argue that 

these differences may reflect the contribution of residual pretransitions of each constituent not 

clearly detectable because covered by the overall curves. In any case, no considerable enthalpic 

differences are evident between GUVs and SUVs. 

As regards the effects ascribable to the curvature for vesicles with binary composition (Fig. 2), 

the differences between GUVs and SUVs become almost negligible for the DSPC:DPPC mixture, 

whereas they are still visible in the cases of mixtures with the shortest phospholipid DMPC. This 

behaviour when DMPC is one of the component, above all in the case of DPPC:DMPC, may be 

related to the higher gap between the Tmax values of the respective reference systems if compared to 

the value associated to the DSPC:DPPC mixture (for instance, ΔTmax is about 13.3°C for 

DSPC:DPPC, whereas it is about 17.6°C for DPPC:DMPC). However, it is less evident in the case 

of DSPC:DMPC because of the breadth of the profiles. In any case, the differences observed, due to 

the membrane curvature, are less evident if compared to the one-component systems reported in 

Fig. 1b. Nevertheless, despite we do not exclude that local curvature modifications may be involved 

in some functionality in real membranes [20,21], it has to be underlined that the results on binary 

systems shown in Fig.2 regard DMPC:DPPC systems prepared as 1:1 molar ratio whereas only 1:7 

correspond in the ISGs [31]. Consequently, these curvature effects should be smaller in the real 

system and may be considered of minor importance in this study with respect to the composition 

contribution to the overall membrane stability and further exploitation of these fine curvature 

aspects is beyond the scope of this work. A tentative interpretation on the curvature effects 

depletion trend is that in pure systems the order-disorder differences due to the asymmetry between 

the inner and outer leaflets of the bilayer are more evident because the starting point (let’s say the 

GUVs suspension) is more ordered. In binary systems the starting point is an already perturbed 

structure with respect the one-component systems and this may decrease the order-disorder 

difference with the respective SUVs. 

 

3.3. Model membranes and FFAs influence 

 

Fig3.approximately.here 

 

Fig. 3 reports the micro-DSC traces of a completely saturated ternary membrane (7 DPPC : 2 

DSPC : 1 DMPC) and a quaternary membrane which included the 5% of an unsaturated component 

(DOPC) in the ternary membrane (6.7 DPPC : 1.8 DSPC : 1.0 DMPC : 0.5 DOPC), both prepared 

as SUVs dispersions. As indicated above, these compositions reflect the components proportions 



and represent the 50% of the headgroups and an average of 75% of the tails in real ISGs [31]. We 

remind that in this work we considered only one type of headgroup (choline) in order to focus on 

the influence of the phospholipid tails in terms of length and/or unsaturation, reflecting the 

phospholipid ratio of the real membrane.  

As for the completely saturated (ternary) membrane, we observed a thermogram that resembles 

the profile exhibited by the binary systems in Fig. 2. Indeed, we observed a main peak with a 

slightly higher maximum temperature (42.8°C) than the Tmax of the major component (DPPC), 

which reflects the presence of a little amount of DSPC, as well as the small “step” at the beginning 

of the curve, which reflects the presence of DMPC. Indeed, the temperature range of the initial part 

of the curve corresponds with the DPPC:DMPC mixed phases reported in Fig. 2. Conversely, in the 

case of the quaternary membrane the thermogram appeared asymmetric and broader, showing a 

more homogeneous phases distribution as a consequence of the addition of unsaturations fully 

covering the initial step of the ternary membrane’s profile. Moreover, the Tmax is slightly shifted 

towards lower temperatures (41.7°C). 

The enthalpies observed are reported in Table 1 and are in line with those calculated by simple 

arithmetic addition of the references’ enthalpies following the components proportions. The 

comparison between the experimental and the calculated enthalpies indicated that the pretransitions 

are prevented in such complex systems and once again confirmed the entropic nature of the mixing 

phenomena that influence the thermodynamic stability of these membranes. On the other hand, the 

introduction of an unsaturated component has a stronger influence (considering the small amount 

added) as regards both the phases distribution that become broader and more homogenous and the 

entropic effect that compromise the overall thermodynamic stability. Such effects are often related 

to the concept of “membrane flexibility” that is well known to play an important role in the 

biological frame [23,50]. All these effects allow to tentatively depict a scenario describing a 

hierarchy of the observed entropic contributions on the thermodynamic stability of these model 

membranes, i.e. presence of unsaturations > tails length > curvature. 

The effects of the FFAs on the thermal stability of such complex systems are shown in Fig.4 

and the relevant thermodynamic parameters are reported in Table 1.  

 

Fig4.approximately.here 

 

At a first view, we observed that the saturated FFAs produced strong stabilizing effects in both 

membranes, whereas opposite effects were exhibited in the presence of the unsaturated one. 



As regards the enthalpic contribution to the overall thermodynamic stability, in the case of saturated 

FFAs as palmitic and stearic acids we observed a slight enthalpy increase (Table 1) that seemed to 

reach a saturation level, with the exception of palmitic acid in the ternary membrane for which the 

enthalpic increment followed the FFAs amount added and became relevant.  

Taking into account that the gel-to-liquid crystalline phase transitions observed are of “order-

disorder” type and assuming that the disordered state (liquid crystalline phase) is not strongly 

affected by the presence of perturbing molecules, the transition variations should depend mainly on 

variations of the ordered state. Consequently, we may argue that the interaction between FFAs and 

membrane phospholipids enhances the number of tail-tail contacts in the ordered state (gel phase) 

that is revealed in an increase of transition enthalpy.  The enthalpy saturation effects observed for 

SA and not for PA suggests that the saturated free acids preferably interact with phospholipids with 

the same tail length. Indeed, considering the molar composition of the membrane, which is rich in 

DPPC (70%), the PA (whose tail is as long as the DPPC ones) enthalpy effects were more relevant. 

On the other hand, the presence of an unsaturated FFA as the oleic acid caused opposite effects 

indicating that the presence of an unsaturated chain between the phospholipid tails disturbs the gel 

phase and produces a decrease of the overall transition enthalpy in both membranes. 

As for the entropy contribution, the presence of saturated FFAs caused a strong entropic 

stabilizing effect shifting the curves at higher temperatures and an evident amplification of phase 

separations that may be identified in at least two main domains in both the ternary and quaternary 

membranes. The phase separations observed again suggests preferable interactions that enhanced 

the ordered state of the membrane, according to the aliphatic chains length differences as already 

observed in the binary systems. Indeed, the DSC profiles reported in Fig. 4 and the ACI values 

(Table 1) suggest that these entropic effects are dependent on the FFAs length, becoming stronger 

as the length increases (for instance SA in our case). The overall effect depended on the FFA 

amount added and seemed to enrich the population of the more stable domain. 

Conversely, the presence of the oleic acid caused a destabilizing effect, in line with the enthalpy 

decrement, lowering the transition temperature region and broadening the peaks again.  

As for the differences between the ternary and quaternary membranes, i.e. the presence of 5% 

of DOPC that leads to more “perturbed” bilayers, the enthalpic effects were attenuated in all cases 

and their contribution in the overall stabilization remained modest regardless of the FFAs amount, 

assigning again a predominant role to the entropic effects that dictate the thermodynamic stability. 

The overall picture of the entropic differences between the two membranes is presented in Fig. 5 in 

terms of shift of the transition average temperature,    , of such systems with respect to the pure 

membranes values.  



 

Fig5.approximately.here 

 

According to this comparison, we may conclude that in first approximation the main effects are 

common to these membranes. In particular, in the case of saturated FFAs the stabilizing effects 

depend on the number of carbon units (chain’s length) and are more pronounced in less stable 

membranes, for instance the quaternary one. On the contrary, in the case of unsaturated FFAs the 

destabilizing effects are more pronounced in more stable membranes, such as the ternary one. 

In any case, we observed an overall loss of transition cooperativity (Table 1) and the effects were 

dependent of the amount of FFAs included, i.e. no saturation of such mainly entropic effects were 

observed in the concentration range investigated. 

 

 

4. Conclusions 

The experimental evidences of this work, which followed a stepwise approach as regard the 

membranes complexity keeping constant the influence of the phospholipids headgroup, permitted to 

discriminate the basic effects that dictate the membrane thermodynamic stability and the influence 

of the FFAs inclusion. We may conclude that the entropic differences between MLBs and 

Unilamellar Vesicles are important in terms of cooperativity (being maximum in MLBs) and the 

systems are difficult to compare, in line with the literature [23]. Curvature effects are also relevant 

among unilamellar vesicles of different size in pure systems, but become of minor importance in 

more complex systems, also just including binary composition membranes. The overall stability of 

the mixed membranes depends on the relative molar ratio of the saturated phospholipids (the longer 

the tails, the more stable the membrane) and the constituent’s contribution is somehow “additive”. 

Moreover, the presence of phase separations increases as the tail lengths’ gap between the 

phospholipid components increases. On the other hand, the presence of unsaturated phospholipids, 

even in minor amounts, has a relevant overall destabilizing effect and enhance the 

homogeneousness on the phases distribution. All the mentioned effects are mainly of entropic 

nature, while the enthalpic contributions seem just proportional to the single component 

contributions according to the composition.  

As for the influence of some perturbing agents, the presence of saturated FFAs on both the 

membranes that are representative of the ISGs (50% of the headgroups and an average of 75% of 

the tails) produces a mainly entropic strong stabilizing effect but also an enthalpic contribution and 

induces severe phase separations in any case. On the opposite, the unsaturated FFA produces an 



overall destabilization of the membranes. All these main effects depend on the amount of FFAs 

present. Whether these thermodynamic effects are correlated with physiological aspects of the real 

ISGs, local or general, is beyond the scope of this paper. Indeed, as a first stage in this paper the 

phospholipid headgroup (choline) was chosen the same for all the constituents. Furthermore, the 

absence in the formulation of an essential component such as cholesterol, that strongly influences 

the membranes stability, further decreases the representative of these model membranes with the 

real system. The effect of cholesterol, the influence of different headgroups and how such 

differences influence the generality of the conclusions as regard both the membrane thermodynamic 

stability and the FFAs influence in real membranes will be the subject of a future work. However, 

despite these necessary limitations as first step, the systematic dissecting of the single 

thermodynamic contributions to the overall thermodynamic behaviour of the ISGs obtained in this 

work may be useful also as a general view since the main composition of many biological 

membranes consists in the phospholipid components here investigated more or less with similar 

composition ratios [19,51]. 
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Figure captions 

 

Fig. 1 

DSC thermograms for pure DMPC, DPPC and DSPC dispersions (from left to right) representing a) 

MLBs (thin curves) versus LUVs (bold curves) and b) GUVs (thin curves) versus SUVs (solid 

curves). The dotted vertical lines mark the Tm of the respective MLBs. 

 

Fig. 2 

Micro-DSC thermograms for GUVs (thin curves) and SUVs (solid curves) dispersions obtained by 

1:1 DSPC:DPPC, DPPC:DMPC and DSPC:DMPC mixtures. The dotted vertical arrows mark the 

Tm of pure DMPC, DPPC, and DSPC MLBs (left to right). 

 

Fig. 3 

Micro-DSC thermograms for a completely saturated ternary membrane as 7 DPPC : 2 DSPC : 1 

DMPC molar ratio (solid curve) and a quaternary membrane obtained by the addition of the 5% of 

DOPC to the ternary membrane achieving a 6.7 DPPC : 1.8 DSPC : 1.0 DMPC : 0.5 DOPC molar 

ratio (dashed curve). The dotted vertical arrow marks the Tm of pure DPPC MLBs. 

 

Fig. 4 

Micro-DSC profiles for pure vesicles (solid curves) and vesicles with the addition of the 10% 

(dashed curves) and the 25% (dotted curves) of FFAs. Thermograms are reported for the saturated 

ternary membrane including a) palmitic acid, b) stearic acid and c) oleic acid, and for the quaternary 

membrane including d) palmitic acid, e) stearic acid and f) oleic acid. 

 

Fig. 5 

Histogram representation showing the effects of 10% and 25% of palmitic acid (PA), stearic acid 

(SA) and oleic acid (OA) on ternary (full bar) and quaternary (lined bar) model membranes in terms 

of transition average temperature   . 



Table 1.  

Thermodynamic parameters evaluated from micro-DSC investigations for 1) binary systems and 2) 

complex model membranes, namely main transition enthalpy (ΔH°), peak maximum temperature 

(Tmax), transition average temperature (  ) and Average Cooperativity Index (ACI). The enthalpy 

arithmetical values calculated adding the reference values obtained from one-component systems 

according the composition ratio is also reported for comparison. 

 

 Calculated  Experimental 

 
ΔH° 

kJ·mol
-1

 

 ΔH° 

kJ·mol
-1

 

Tmax 

°C 

   

°C 

ACI 

°C 

1. Binary systems 

A 

DSPC:DPPC 

 
GUVs 

40  
 46 ± 2 48.1 ± 0.3 47.3 ± 0.3 2.3 ± 0.2 

SUVs  45 ± 2  48.4 ± 0.3 47.2 ± 0.3 2.0 ± 0.2 

DPPC:DMPC 

 
GUVs 

30  
 33 ± 2 41.7 ± 0.3 31.6 ± 0.3 3.0 ± 0.2 

SUVs  35 ± 2 41.7 ± 0.3 31.9 ± 0.3 3.3 ± 0.2 

DSPC:DMPC 

 
GUVs 

34  
 38 ± 2 45.0 ± 0.3 37.4 ± 0.3 7.1 ± 0.2 

SUVs  37 ± 2 44.8 ± 0.3 37.1 ± 0.3 6.9 ± 0.2 

       

2. Complex model membranes 

1 

Pure Ternary Membrane 36   37 ± 2 42.8 ± 0.3 41.5 ± 0.3 2.5 ± 0.2 

          +10% PA   42 ± 2 44.4 ± 0.3 44.0 ± 0.3 2.7 ± 0.2 

          +25% PA   55 ± 2 49.3 ± 0.3 47.9 ± 0.3 2.8 ± 0.2 

          +10% SA   41 ± 2 44.3 ± 0.3 44.9 ± 0.3 2.7 ± 0.2 

          +25% SA   41 ± 2 52.2 ± 0.3 48.7 ± 0.3 3.9 ± 0.2 

          +10% OA   30 ± 2 41.1 ± 0.3 40.1 ± 0.3 2.4 ± 0.2 

          +25% OA   30 ± 2 39.2 ± 0.3 38.9 ± 0.3 2.9 ± 0.2 

Pure Quaternary Membrane 32   33 ± 2 41.7 ± 0.3 39.6 ± 0.3 3.0 ± 0.2 

          +10% PA   38 ± 2 44.4 ± 0.3 42.6 ± 0.3 3.9 ± 0.2 

          +25% PA   41 ± 2 49.9 ± 0.3 46.4 ± 0.3 4.2 ± 0.2 

          +10% SA   39 ± 2 43.9 ± 0.3 43.1 ± 0.3 4.1 ± 0.2 

          +25% SA   38 ± 2 52.3 ± 0.3 48.2 ± 0.3 4.6 ± 0.2 

          +10% OA   33 ± 2 40.6 ± 0.3 38.8 ± 0.3 3.0 ± 0.2 

          +25% OA   34 ± 2 39.4 ± 0.3 37.7 ± 0.3 3.4 ± 0.2 

Table(s)



 



-5

0

5

10

15

20

25

30

35

40

45

5 15 25 35 45 55 65

C
p
ex

c
/ 

k
J·

K
-1

·m
o

l-1

T / °C

L37TB

L52TB

GUVs

SUVs

-100

-80

-60

-40

-20

0

20

40

60

80

100

5 15 25 35 45 55 65

C
p
ex

c
/ 

k
J·

K
-1

·m
o

l-1

T / °C

L01B

L03B

L07CB

Asse

L29TB2

L38TB

L50TB1

MLBs

LUVs

a

b

en
d
o

en
d
o

DMPC DPPC DSPC

Figure(s)



5 15 25 35 45 55 65

C
p

ex
c

/ 
k

J·
K

-1
·m

o
l-1

T / °C

L39TB

L58TB

en
d
o

5

0

5

0

5

0

10

5

DSPC:DMPC

DSPC:DPPC

DPPC:DMPC

GUVs

SUVs

Figure(s)



-2

0

2

4

6

8

10

12

25 30 35 40 45 50 55

C
p

ex
c

/ 
k

J·
K

-1
·m

o
l-1

T / °C

7.08E-09

L72Ben
d
o

Ternary

membrane

Quaternary

membrane

Figure(s)



-2

0

2

4

6

8

10

12

20 25 30 35 40 45 50 55 60

C
p

ex
c

/ 
k

J·
K

-1
·m

o
l-1

T / °C

-2

0

2

4

6

8

10

12

20 25 30 35 40 45 50 55 60

C
p
ex

c
/ 

k
J·

K
-1

·m
o

l-1

T / °C

-2

0

2

4

6

8

10

12

20 25 30 35 40 45 50 55 60

C
p
ex

c
/ 

k
J·

K
-1

·m
o

l-1

T / °C

-2

0

2

4

6

8

10

12

20 25 30 35 40 45 50 55 60

C
p
ex

c
/ 

k
J·

K
-1

·m
o

l-1

T / °C

-2

0

2

4

6

8

10

12

20 25 30 35 40 45 50 55 60

C
p
ex

c
/ 

k
J·

K
-1

·m
o

l-1

T / °C

en
d
o

a

b

c

en
d
o

en
d
o

-2

0

2

4

6

8

10

12

20 25 30 35 40 45 50 55 60

C
p
ex

c
/ 

k
J·

K
-1

·m
o

l-1

T / °C

L72B

L73B

L76B

en
d
o

en
d
o

en
d
o

d

e

f

Pure membrane

+ 10% FFA

+ 25% FFA

TERNARY MEMBRANES QUATERNARY MEMBRANES

+ Palmitic acid + Palmitic acid

+ Stearic acid + Stearic acid

+ Oleic acid + Oleic acid

Figure(s)



-4

-2

0

2

4

6

8

10

+10% PA +25% PA +10% SA +25% SA +10% OA +25% OA

T
 -

T
(p

u
re

 m
em

b
ra

n
e)

/ 
°C

% FFAs

Ternary Membrane

Quaternary Membrane

Figure(s)



  

Supplementary Material
Click here to download Supplementary Material: SupplementaryMaterialFessasREV.pdf

http://ees.elsevier.com/colsub/download.aspx?id=909979&guid=18fa4be7-3e7f-468c-9046-f9c32dec9d8c&scheme=1


Membrane entropic contributions’ hierarchy: unsaturation > tail length > curvature 

Membrane curvature effects are less relevant as the composition complexity grows 

Saturated Fatty Acids cause a higher stabilization on less organized membranes 

Unsaturated Fatty Acids cause a higher destabilization on more organized membranes 
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