208 research outputs found

    The effect of vacancy-induced magnetism on electronic transport in armchair carbon nanotubes

    Full text link
    The influence of local magnetic moment formation around three kinds of vacancies on the electron conduction through metallic single-wall carbon nanotubes is studied by use of the Landauer formalism within the coherent regime. The method is based on the single-band tight-binding Hamiltonian, a surface Green's function calculation, and the mean-field Hubbard model. The numerical results show that the electronic transport is spin-polarized due to the localized magnetic moments and it is strongly dependent on the geometry of the vacancies. For all kinds of vacancies, by including the effects of local magnetic moments, the electron scattering increases with respect to the nonmagnetic vacancies case and hence, the current-voltage characteristic of the system changes. In addition, a high value for the electron-spin polarization can be obtained by applying a suitable gate voltage.Comment: 6 pages, 6 figure

    Optical absorption spectrum in disordered semiconductor multilayers

    Full text link
    The effects of chemical disorder on the electronic and optical properties of semiconductor alloy multilayers are studied based on the tight-binding theory and single-site coherent potential approximation. Due to the quantum confinement of the system, the electronic spectrum breaks into a set of subbands and the electronic density of states and hence the optical absorption spectrum become layer-dependent. We find that, the values of absorption depend on the alloy concentration, the strength of disorder, and the layer number. The absorption spectrum in all layers is broadened because of the influence of disorder and in the case of strong disorder regime, two optical absorption bands appear. In the process of absorption, most of the photon energy is absorbed by the interior layers of the system. The results may be useful for the development of optoelectronic nanodevices.Comment: 6 pages, 6 EPS figures, revised versio

    The effects of a magnetic barrier and a nonmagnetic spacer in tunnel structures

    Full text link
    The spin-polarized transport is investigated in a new type of magnetic tunnel junction which consists of two ferromagnetic electrodes separated by a magnetic barrier and a nonmagnetic metallic spacer. Based on the transfer matrix method and the nearly-free-electron-approximation the dependence of the tunnel magnetoresistance (TMR) and electron-spin polarization on the nonmagnetic layer thickness and the applied bias voltage are studied theoretically. The TMR and spin polarization show an oscillatory behavior as a function of the spacer thickness and the bias voltage. The oscillations originate from the quantum well states in the spacer, while the existence of the magnetic barrier gives rise to a strong spin polarization and high values of the TMR. Our results may be useful for the development of spin electronic devices based on coherent transport.Comment: 15 pages, 5 figure

    Spin-dependent resonant tunneling in ZnSe/ZnMnSe heterostructures

    Full text link
    Using the transfer matrix method and the effective-mass approximation, the effect of resonant states on spin transport is studied in ZnSe/ZnMnSe/ZnSe/ZnMnSe/ZnSe structures under the influence of both electric and magnetic fields. The numerical results show that the ZnMnSe layers, which act as spin filters, polarize the electric currents. Variation of thickness of the central ZnSe layer shifts the resonant levels and exhibits an oscillatory behavior in spin current densities. It is also shown that the spin polarization of the tunneling current in geometrical asymmetry of the heterostructure where two ZnMnSe layers have different Mn concentrations, depends strongly on the thickness and the applied bias.Comment: 13 pages, 6 figure

    Electronic and optical spectra in a diluted magnetic semiconductor multilayer

    Full text link
    The effects of random distribution of magnetic impurities with concentration xx in a semiconductor alloy multilayer at a paramagnetic temperature are investigated by means of coherent potential approximation and tight-binding model. The change in the electronic states and the optical absorption spectrum with xx is calculated for weak and strong exchange interactions between carrier spins and localized spin moments on magnetic ions. We find that the density of states and optical absorption are strongly layer-dependent due to the quantum size effects. The electronic and optical spectra are broadened due to the spin fluctuations of magnetic ions and in the case of strong exchange interaction, an energy gap appears in both spectra. Furthermore, the interior layers show higher contribution in the optical absorption of the system. The results can be helpful for magneto-optical devices at a paramagnetic temperature.Comment: 7 pages, 5 figure

    Internalization of Bacillus intermedius ribonuclease (BINASE) induces human alveolar adenocarcinoma cell death

    Get PDF
    Ribonuclease (RNase) treatment represents a novel mechanism based approach to anticancer therapy as an alternative to the DNA damaging drugs commonly used in clinical practice. Apart from their ribonucleolytic activity, cytotoxic effects have attracted a considerable attention to RNases because of their potential as selective agents for treatment of certain malignancies. Among these enzymes, Binase, an RNase from Bacillus intermedius, has shown promising results. Here, we have found that binase selectively attacked human A549 alveolar adenocarcinoma cells to trigger an apoptotic response, whereas normal lung epithelial cells LEK were not affected by the ribonuclease. The tumor transformation led to the modification of certain cellular characteristics causing cell sensitivity to binase. Although a general mode for RNases cytotoxicity includes their penetration into the cell, translocation to the cytosol and degradation of ribonucleic acid, many aspects of this process have not been fully elucidated. Our data revealed the following time-dependent changes induced by binase in A549 cells: (a) fast permanent internalization of the enzyme during the first hours of treatment; (b) temporary increase in cellular permeability for macromolecules during the 4-6hof treatment; (c) apoptotic alterations in population after 24hand (d) DNA fragmentation and cell death after 72hof treatment with binase. Elucidation of these molecular strategies used by this promising toxin provides us essential information for the development of new anticancer drugs. © 2013 Elsevier Ltd

    Influence of moisture contents on the fast pyrolysis of trommel fines in a bubbling fluidized bed reactor

    Get PDF
    In this study, the effect of moisture contents [2.69 wt% (bone-dry), 5 wt% and 10 wt%] on product yields and process conversion efficiency during fast pyrolysis of a pre-treated trommel fines feedstock was investigated at 500 °C. Experiments were carried out using a 300 g h −1 bubbling fluidised bed rig. Yields of organic liquids ranged from 15.2 to 19.6 wt% of feedstock, which decreased with increasing moisture content. Hence, the bone-dry feedstock gave the maximum yield and consequently the highest process conversion efficiency of 43%. Increased moisture content also led to increase formation of unidentified gas products, indicating increased conversion of organic liquids. Due to the high ash content of the feedstocks, about 52 wt% solid residues, containing around 82% ash was recovered in the char pot in each case. Hence, to maximize oil yields during fast pyrolysis, trommel fines would require extensive drying to remove the original 46 wt% moisture as well as reducing the ash content considerably. XRF analysis of the ash in the feedstock and solid residues showed that the main elements present included Ca, Si, Fe, Pb, K, Cl and Al. Apart from the presence of Pb (which may be from the glass contents of the feedstock), the solid residues could be used for land reclamation or co-incinerated at cement kilns for cement manufacture

    Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    Get PDF
    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease

    Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer

    Get PDF
    Citrullinated histone H3 (H3Cit) is a central player in the neutrophil release of nuclear chromatin, known as neutrophil extracellular traps (NETs). NETs have been shown to elicit harmful effects on the host, and were recently proposed to promote tumor progression and spread. Here we report significant elevations of plasma H3Cit in patients with advanced cancer compared with age-matched healthy individuals. These elevations were specific to cancer patients as no increase was observed in severely ill and hospitalized patients with a higher non-malignant comorbidity. The analysis of neutrophils from cancer patients showed a higher proportion of neutrophils positive for intracellular H3Cit compared to severely ill patients. Moreover, the presence of plasma H3Cit in cancer patients strongly correlated with neutrophil activation markers neutrophil elastase (NE) and myeloperoxidase (MPO), and the inflammatory cytokines interleukin-6 and -8, known to induce NETosis. In addition, we show that high levels of circulating H3Cit strongly predicted poor clinical outcome in our cohort of cancer patients with a 2-fold increased risk for short-term mortality. Our results also corroborate the association of NE, interleukin-6 and -8 with poor clinical outcome. Taken together, our results are the first to unveil H3Cit as a potential diagnostic and prognostic blood marker associated with an exacerbated inflammatory response in patients with advanced cancer
    corecore