3,516 research outputs found

    Emergent Critical Phase and Ricci Flow in a 2D Frustrated Heisenberg Model

    Full text link
    We introduce a two-dimensional frustrated Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. Classically the two sublattices decouple, and "order from disorder" drives them into a coplanar state. Applying Friedan's geometric approach to nonlinear sigma models, we show that the scaling of the spin-stiffnesses corresponds to the Ricci flow of a 4D metric tensor. At low temperatures, the relative phase between the spins on the two sublattices is described by a six-state clock model with an emergent critical phase.Comment: 4+ pages, 2 figure

    Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia

    Get PDF
    The severe 2010 heat wave in western Russia was found to be influenced by anthropogenic climate change. Additionally, soil moisture-temperature feedbacks were deemed important for the buildup of the exceptionally high temperatures. We quantify the relative role of both factors by applying the probabilistic event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. The dry 2010 soil moisture alone has increased the risk of a severe heat wave in western Russia sixfold, while climate change from 1960 to 2000 has approximately tripled it. The combined effect of climate change and 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed a necessary basis for the extreme heat wave

    Vacuum energy in the presence of a magnetic string with delta function profile

    Full text link
    We present a calculation of the ground state energy of massive spinor fields and massive scalar fields in the background of an inhomogeneous magnetic string with potential given by a delta function. The zeta functional regularization is used and the lowest heat kernel coefficients are calculated. The rest of the analytical calculation adopts the Jost function formalism. In the numerical part of the work the renormalized vacuum energy as a function of the radius RR of the string is calculated and plotted for various values of the strength of the potential. The sign of the energy is found to change with the radius. For both scalar and spinor fields the renormalized energy shows no logarithmic behaviour in the limit R0R\to 0, as was expected from the vanishing of the heat kernel coefficient A2A_2, which is not zero for other types of profiles.Comment: 30 pages, 10 figure

    Chemical fractionation of siderophile elements in impactites from Australian meteorite craters

    Get PDF
    The abundance pattern of siderophile elements in terrestrial and lunar impact melt rocks was used extensively to infer the nature of the impacting projectiles. An implicit assumption made is that the siderophile abundance ratios of the projectiles are approximately preserved during mixing of the projectile constituents with the impact melts. As this mixture occurs during flow of strongly shocked materials at high temperatures, however there are grounds for suspecting that the underlying assumption is not always valid. In particular, fractionation of the melted and partly vaporized material of the projectile might be expected because of differences in volatility, solubility in silicate melts, and other characteristics of the constituent elements. Impactites from craters with associated meteorites offer special opportunities to test the assumptions on which projectile identifications are based and to study chemical fractionation that occurred during the impact process

    Revisiting global vegetation controls using multi-layer soil moisture

    Get PDF

    Cholesterol : its regulation and role in central nervous system disorders

    Get PDF
    Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer's disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions

    Electron irradiation effects on superconductivity in PdTe2_2: an application of a generalized Anderson theorem

    Full text link
    Low temperature (\sim 20~K) electron irradiation with 2.5 MeV relativistic electrons was used to study the effect of controlled non-magnetic disorder on the normal and superconducting properties of the type-II Dirac semimetal PdTe2_2. We report measurements of longitudinal and Hall resistivity, thermal conductivity and London penetration depth using tunnel-diode resonator technique for various irradiation doses. The normal state electrical resistivity follows Matthiessen rule with an increase of the residual resistivity at a rate of \sim0.77μΩ \mu \Omegacm/(C/cm2)(\textrm{C}/\textrm{cm}^2). London penetration depth and thermal conductivity results show that the superconducting state remains fully gapped. The superconducting transition temperature is suppressed at a non-zero rate that is about sixteen times slower than described by the Abrikosov-Gor'kov dependence, applicable to magnetic impurity scattering in isotropic, single-band ss-wave superconductors. To gain information about the gap structure and symmetry of the pairing state, we perform a detailed analysis of these experimental results based on insight from a generalized Anderson theorem for multi-band superconductors. This imposes quantitative constraints on the gap anisotropies for each of the possible pairing candidate states. We conclude that the most likely pairing candidate is an unconventional A1g+A_{1g}^{+-} state. While we cannot exclude the conventional A1g++A_{1g}^{++} and the triplet A1uA_{1u}, we demonstrate that these states require additional assumptions about the orbital structure of the disorder potential to be consistent with our experimental results, e.g., a ratio of inter- to intra-band scattering for the singlet state significantly larger than one. Due to the generality of our theoretical framework, we think that it will also be useful for irradiation studies in other spin-orbit-coupled multi-orbital systems.Comment: 22 pages, 12 figure

    The role of climate and vegetation in regulating drought-heat extremes

    Get PDF
    corecore