535 research outputs found

    Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters

    Get PDF
    Modern service robots will soon become an essential part of modern society. As they have to move and act in human environments, it is essential for them to be provided with a fast and reliable tracking system that localizes people in the neighbourhood. It is therefore important to select the most appropriate filter to estimate the position of these persons. This paper presents three efficient implementations of multisensor-human tracking based on different Bayesian estimators: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Sampling Importance Resampling (SIR) particle filter. The system implemented on a mobile robot is explained, introducing the methods used to detect and estimate the position of multiple people. Then, the solutions based on the three filters are discussed in detail. Several real experiments are conducted to evaluate their performance, which is compared in terms of accuracy, robustness and execution time of the estimation. The results show that a solution based on the UKF can perform as good as particle filters and can be often a better choice when computational efficiency is a key issue

    Expression profile of nuclear receptors upon epstein — barr virus induced b cell transformation

    No full text
    Background: Infection of human B cells with Epstein—Barr virus (EBV) induces metabolic activation, morphological transformation, cell proliferation and eventual immortalization. Aim: To identify the nuclear receptors, which are the cellular interaction partners of EBNAs, that will help to elucidate the mechanism of B cell transformation. Methods: We have compared the nuclear receptor profile in the naïve and EBV-transformed B-lymphocytes, using TaqMan LDA microfluidic card technology. Results: Out of 48 nuclear receptor, 17 showed differential expression at the mRNA level. The expression of 5 genes was elevated in EBV-transformed cells, whereas 12 genes were downregulated in lymphoblastoid cells (LCLs). 7 genes were studied at the protein level; 2 genes were up regulated (Nr2F2 and RARA) and 4 genes were down regulated (ERB, NUR77, PPARG, and VDR) in LCLs. Conclusion: The nuclear receptor profiling on EBV infected B cells showed alterations of nuclear receptors expression at both mRNA and protein levels compared with non infected peripheral blood cells. Further analysis on a possible role of each nuclear receptor in EBV induced cell transformation should be performed

    Image-Based Monte-Carlo Localisation without a Map

    Full text link
    In this paper, we propose a way to fuse the image-based localisation approach with the Monte-Carlo localisation approach. The method we propose does not suffer of the major limitation of the two separated methods: the need of a metric map of the environment for the Monte-Carlo localisation and the failure of the image-based approach in environments with spatial periodicity (perceptual aliasing). The approach we developed exploits the properties of the Fourier Transform of the omnidirectional images and uses the similarity between the images to weights the beliefs about the robot position. Successful experiments in large indoor environment are presented in which we do not used a priory information on the metrical map of the environment

    Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals.

    Get PDF
    The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function

    A robust tracking system for low frame rate video

    Get PDF
    Tracking in low frame rate (LFR) videos is one of the most important problems in the tracking literature. Most existing approaches treat LFR video tracking as an abrupt motion tracking problem. However, in LFR video tracking applications, LFR not only causes abrupt motions, but also large appearance changes of objects because the objects’ poses and the illumination may undergo large changes from one frame to the next. This adds extra difficulties to LFR video tracking. In this paper, we propose a robust and general tracking system for LFR videos. The tracking system consists of four major parts: dominant color-spatial based object representation, bin-ratio based similarity measure, annealed particle swarm optimization (PSO) based searching, and an integral image based parameter calculation. The first two parts are combined to provide a good solution to the appearance changes, and the abrupt motion is effectively captured by the annealed PSO based searching. Moreover, an integral image of model parameters is constructed, which provides a look-up table for parameters calculation. This greatly reduces the computational load. Experimental results demonstrate that the proposed tracking system can effectively tackle the difficulties caused by LFR

    An advanced Bayesian model for the visual tracking of multiple interacting objects

    Get PDF
    Visual tracking of multiple objects is a key component of many visual-based systems. While there are reliable algorithms for tracking a single object in constrained scenarios, the object tracking is still a challenge in uncontrolled situations involving multiple interacting objects that have a complex dynamics. In this article, a novel Bayesian model for tracking multiple interacting objects in unrestricted situations is proposed. This is accomplished by means of an advanced object dynamic model that predicts possible interactive behaviors, which in turn depend on the inference of potential events of object occlusion. The proposed tracking model can also handle false and missing detections that are typical from visual object detectors operating in uncontrolled scenarios. On the other hand, a Rao-Blackwellization technique has been used to improve the accuracy of the estimated object trajectories, which is a fundamental aspect in the tracking of multiple objects due to its high dimensionality. Excellent results have been obtained using a publicly available database, proving the efficiency of the proposed approach

    Early identification of first-year students at risk of dropping out of high-school entry medical school: the usefulness of teachers' ratings of class participation

    Get PDF
    Dropping out from undergraduate medical education is costly for students, medical schools, and society in general. Therefore, the early identification of potential dropout students is important. The contribution of personal features to dropout rates has merited exploration. However, there is a paucity of research on aspects of student experience that may lead to dropping out. In this study, underpinned by theoretical models of student commitment, involvement, and engagement, we explored the hypothesis of using inferior participation as an indicator of a higher probability of dropping out in year 1. Class participation was calculated as an aggregate score based on teachers' daily observations in class. The study used a longitudinal dataset of six cohorts of high-school entry students (N = 709, 67% females) in one medical school with an annual intake of 120 students. The findings confirmed the initial hypothesis and showed that lower scores of class participation in year 1 added predictive ability to pre-entry characteristics (Pseudo-R2 raised from 0.22 to 0.28). Even though the inclusion of course failure in year 1 resulted in higher explanatory power than participation in class (Pseudo-R2 raised from 0.28 to 0.63), ratings of class participation may be advantageous to anticipate dropout identification, as those can be collected prior to course failure. The implications for practice are that teachers' ratings of class participation can play a role in indicating medical students who may eventually drop out. We conclude that the scores of class participation can contribute to flagging systems for the early detection of student dropouts.(undefined)info:eu-repo/semantics/acceptedVersio
    corecore