219 research outputs found

    Slip events and dilatancy in a sheared fine noncohesive powder

    Get PDF
    International audienceWe present experimental results of the transition from steady-state sliding to oscillatory motion for a fine noncohesive powder, sheared in an annular cell. The onset of instability is compared to the Dieterich-Ruina model for solid friction. We present data showing that at low velocity and close to the transition, the major sliding jumps are preceded by a short or long period of unstable plastic yielding of the granular matter. This ambivalent behavior suggests that the jumps are initiated when the sliding overcomes a critical velocity. During the stick-slip motion, the dilatancy of the powder bed has been also observed: the slippage is associated with a compaction whose value increases with the jump in the friction coefficient

    BrowserAudit: Automated testing of browser security features

    No full text
    The security of the client side of a web application relies on browser features such as cookies, the same-origin policy and HTTPS. As the client side grows increasingly powerful and sophisticated, browser vendors have stepped up their offering of security mechanisms which can be leveraged to protect it. These are often introduced experimentally and informally and, as adoption increases, gradually become standardised (e.g., CSP, CORS and HSTS). Considering the diverse landscape of browser vendors, releases, and customised versions for mobile and embedded devices, there is a compelling need for a systematic assessment of browser security. We present BrowserAudit, a tool for testing that a deployed browser enforces the guarantees implied by the main standardised and experimental security mechanisms. It includes more than 400 fully-automated tests that exercise a broad range of security features, helping web users, application developers and security researchers to make an informed security assessment of a deployed browser. We validate BrowserAudit by discovering both fresh and known security-related bugs in major browsers. Copyright is held by the owner/author(s)

    Sextupole correction magnets for the Large Hadron Collider

    Get PDF
    About 2500 superconducting sextupole corrector magnets (MCS) are needed for the Large Hadron Collider (LHC) at CERN to compensate persistent current sextupole fields of the main dipoles. The MCS is a cold bore magnet with iron yoke. The coils are made from a NbTi conductor, which is cooled to 1.9 K. In the original CERN design 6 individual sub-coils, made from a monolithic composite conductor, are assembled and spliced together to form the sextupole. The coils are individually wound around precision-machined central islands and stabilized with matching saddle pieces at both ends. The Advanced Magnet Lab, Inc. (AML) has produced an alternative design, which gives improved performance and reliability at reduced manufacturing cost. In the AML design, the magnet consists of three splice-free sub-coils, which are placed with an automated winding process into pockets of prefabricated G-11 support cylinders. Any assembly process of sub-coils with potential misalignment is eliminated. The AML magnet uses a Kapton-wrapped mini-cable, which allows helium penetration into the vicinity of the conductor, increasing its cryogenic stability. Eliminating all internal splices from the magnet significantly reduces heat loads and the risk of magnet failure during operation. A tested prototype reached the critical current limit of the conductor in the first quench. (3 refs)

    Surface shape reconstruction from phaseless scattered acoustic data using a random forest algorithm

    Get PDF
    Recent studies have demonstrated that acoustic waves can be used to reconstruct the roughness profile of a rigid scattering surface. In particular, the use of multiple microphones placed above a rough surface as well as an analytical model based on the linearised Kirchhoff integral equations provides a sufficient base for the inversion algorithm to estimate surface geometrical properties. Prone to fail in the presence of high noise and measurement uncertainties, the analytical approach may not always be suitable in analysing measured scattered acoustic pressure. With the aim to improve the robustness of the surface reconstruction algorithms, here it is proposed to use a data-driven approach through the application of a random forest regression algorithm to reconstruct specific parameters of one-dimensional sinusoidal surfaces from airborne acoustic phase-removed pressure data. The data for the training set are synthetically generated through the application of the Kirchhoff integral in predicting scattered sound, and they are further verified with data produced from laboratory measurements. The surface parameters from the measurement sample were found to be recovered accurately for various receiver combinations and with a wide range of noise levels ranging from 0.1% to 30% of the average scattered acoustical pressure amplitude

    Shapes, contact angles, and line tensions of droplets on cylinders

    Full text link
    Using an interface displacement model we calculate the shapes of nanometer-size liquid droplets on homogeneous cylindrical surfaces. We determine effective contact angles and line tensions, the latter defined as excess free energies per unit length associated with the two contact lines at the ends of the droplet. The dependences of these quantities on the cylinder radius and on the volume of the droplets are analyzed.Comment: 26 pages, RevTeX, 10 Figure

    Defining the Structural Parameters That Confer Anticonvulsant Activity by the Site-by-Site Modification of ( R )- N ′-Benzyl 2-Amino-3-methylbutanamide

    Get PDF
    Primary Amino Acid Derivatives (PAADs) (N′-benzyl 2-substituted 2-amino acetamides) are structurally related to Functionalized Amino Acids (FAAs) (N′-benzyl 2- substituted 2-acetamido acetamides) but differ by the absence of the terminal N-acetyl group. Both classes exhibit potent anticonvulsant activities in the maximal electroshock seizure animal model and the reported structure-activity relationships (SARs) of PAADs and FAAs differ in significant ways. Recently, we documented that PAAD efficacy was associated with a hydrocarbon moiety at the C(2)-carbon, while in the FAAs, a substituted heteroatom one atom removed from the C(2)-center was optimal. Previously in this issue, we showed that PAAD activity was dependent upon the electronic properties of the 4′-N′-benzylamide substituent, while FAA activity was insensitive to electronic changes at this site. In this study, we prepared analogs of (R)-N′-benzyl 2-amino-3-methylbutanamide to identify the structural components for maximal anticonvulsant activity. We demonstrated that the SAR of PAADs and FAAs diverged at the terminal amide site and that PAADs had considerably more structural latitude in the types of units that could be incorporated at this position, suggesting that these compounds function according to different mechanism(s)

    Reconstruction of the frequency-wavenumber spectrum of water waves with an airborne acoustic Doppler array for non-contact river monitoring

    Get PDF
    This work presents a novel method to reconstruct the frequency-wavenumber spectrum of water waves based on the complex acoustic Doppler spectra of scattered sound measured with an array of microphones. The reconstruction is based on a first-order small-roughness-amplitude expansion of the acoustic wave scattering equation, which is discretized and inverted by means of a singular value decomposition. An analogy of this approach to the first-order Bragg scattering problem is demonstrated by means of a stationary phase expansion. The approach enables the reconstruction of the dispersion relation of water waves when the ratio between roughness height and acoustic wavelength is less than 0.1, and when the surface wavelength is larger than 1/2 of the acoustic wavelength. The method is validated against synthetic data and data from laboratory and field experiments, to demonstrate its applicability to two-and three-dimensional complex patterns of water waves, and specifically to the surface deformations that arise naturally in a turbulent open-channel flow. Fitting the reconstructed data with the analytical dispersion relation enables the non-contact estimate of the underlying flow velocity for hydraulic conditions where the coexistence of different types of turbulence-forced and freely propagating water waves would limit the accuracy of standard non-contact Doppler velocimetry approaches, paving the way for robust and accurate non-contact river monitoring using acoustics

    Non-typeable Haemophilus influenzae protein vaccine in adults with COPD:A phase 2 clinical trial

    Get PDF
    Loss of airway microbial diversity is associated with non-typeable Haemophilus influenzae (NTHi) infection and increased risk of exacerbation in chronic obstructive pulmonary disease (COPD). We assessed the safety and immunogenicity of an investigational vaccine containing NTHi antigens, recombinant protein D (PD) and combined protein E and Pilin A (PE-PilA), and AS01 adjuvant in adults with moderate/-severe COPD and prior exacerbations. In this phase 2, observer-blind, controlled trial (NCT02075541), 145 COPD patients aged 40-80 years randomly (1:1) received two doses of NTHi vaccine or placebo 60 days apart, on top of standard care. Reactogenicity in the 7-day post-vaccination period was higher following NTHi vaccine than placebo. Most solicited adverse events (AEs) were mild/moderate. At least one unsolicited AE was reported during the 30-day post-vaccination period by 54.8% of NTHi vaccine and 51.4% of placebo recipients. One serious AE (placebo group) was assessed by the investigator as vaccine-related. Anti-PD, anti-PE and anti-PiIA geometric mean antibody concentrations increased up to 30 days after each NTHi vaccine dose, waned thereafter, but remained higher than baseline (non-overlapping confidence intervals) up to 13 months post-dose 2. The frequency of specific CD4(+) T cells increased following two doses of NTHi vaccine and remained higher than baseline. Exploratory analysis showed a statistically non-significant lower yearly rate of moderate/severe exacerbations in the NTHi vaccine group than following placebo (1.49 versus 1.73) in the one-year period post-dose 2, with estimated vaccine efficacy of 13.3% (95% confidence interval -24.2 to 39.5; p = 0.44). The NTHi vaccine had an acceptable safety and reactogenicity profile and good immunogenicity in adults with COPD
    • …
    corecore