105 research outputs found

    Impact of simulated reduced alveolar bone support, increased tooth mobility, and distal post-supported, root-treated abutment tooth on load capability of all-ceramic zirconia-supported cantilever FDP

    Get PDF
    OBJECTIVES The aim of this in vitro study was an analysis of the impact of simulated reduced alveolar bone support and post-restored, endodontically treated distal abutment tooth on load capability of all-ceramic zirconia-based cantilever-fixed dental prosthesis (CFDP). MATERIAL AND METHODS The roots of human lower sound premolars (n = 80) were divided into five experimental groups to be restored with all-ceramic zirconia-supported three-unit CFDP regarding bone loss (BL) relative to the cement-enamel junction (CEJ): 2 mm below CEJ = 0% BL (control group), group 25% distal BL, group 50% distal BL, group 50% mesial and distal BL, and group 50% distal BL and adhesive post-supported restoration. Specimens were exposed to simulated clinical function by thermo-mechanical loading (6.000 cycles 5°-55°; 1.2 × 10 cycles 0-50 N) and subsequent linear loading until failure. RESULTS Tooth mobility increased significantly for groups with simulated bone loss (p < 0.001). Four specimens failed during thermal cycling and mechanical loading (TCML). The maximum load capability ranged from 350 to 569 N, and did not differ significantly between experimental groups (p = 0.095). Groups with simulated bone loss revealed more tooth fractures at distal abutment teeth, whereas technical failures were more frequent in the control group (p = 0.024). CONCLUSIONS Differences of alveolar bone support and respectively increased tooth mobility between mesial and distal abutments did not influence load capability. A distal adhesively post-and-core-supported, root-treated abutment tooth did not increase risk of three-unit CFDP failure. CLINICAL RELEVANCE CFDPs are a treatment option used with caution when reduced alveolar bone support, increased tooth mobility, and distal post-supported, root-treated abutment teeth are involved

    Wear and corrosion interactions on titanium in oral environment : literature review

    Get PDF
    The oral cavity is a complex environment where corrosive substances from dietary, human saliva, and oral biofilms may accumulate in retentive areas of dental implant systems and prostheses promoting corrosion at their surfaces. Additionally, during mastication, micromovements may occur between prosthetic joints causing a relative motion between contacting surfaces, leading to wear. Both processes (wear and corrosion) result in a bio-tribocorrosion system once that occurs in contact with biological tissues and fluids. This review paper is focused on the aspects related to the corrosion and wear behavior of titanium-based structures in the oral environment. Furthermore, the clinical relevance of the oral environment is focused on the harmful effect that acidic substances and biofilms, formed in human saliva, may have on titanium surfaces. In fact, a progressive degradation of titanium by wear and corrosion (tribocorrosion) mechanisms can take place affecting the performance of titanium-based implant and prostheses. Also, the formation of wear debris and metallic ions due to the tribocorrosion phenomena can become toxic for human tissues. This review gathers knowledge from areas like materials sciences, microbiology, and dentistry contributing to a better understanding of bio-tribocorrosion processes in the oral environment.(undefined

    Difference in the color stability of direct and indirect resin composites

    Get PDF
    Indirect resin composites are generally regarded to have better color stability than direct resin composites since they possess higher conversion degree. OBJECTIVE: The present study aimed at comparing the changes in color (&#916;E) and color coordinates (&#916;L, &#916;a and &#916;b) of one direct (Estelite Sigma: 16 shades) and 2 indirect resin composites (BelleGlass NG: 16 shades; Sinfony: 26 shades) after thermocycling. MATERIAL AND METHODS: Resins were packed into a mold and light cured; post-curing was performed on indirect resins. Changes in color and color coordinates of 1-mm-thick specimens were determined after 5,000 cycles of thermocycling on a spectrophotometer. RESULTS: &#916;E values were in the range of 0.3 to 1.2 units for direct resins, and 0.3 to 1.5 units for indirect resins, which were clinically acceptable (&#916;E0.05), while &#916;L, &#916;a and &#916;b values were signifcantly different by the type of resins (p<0.05). For indirect resins, &#916;E values were infuenced by the brand, shade group and shade designation based on three-way ANOVA (p<0.05). CONCLUSION: Direct and indirect resin composites showed similar color stability after 5,000 cycles of thermocycling; however, their changes in the color coordinates were different
    • …
    corecore