282 research outputs found

    Building bone tissue: matrices and scaffolds in physiology and biotechnology

    Get PDF
    Deposition of bone in physiology involves timed secretion, deposition and removal of a complex array of extracellular matrix proteins which appear in a defined temporal and spatial sequence. Mineralization itself plays a role in dictating and spatially orienting the deposition of matrix. Many aspects of the physiological process are recapitulated in systems of autologous or xenogeneic transplantation of osteogenic precursor cells developed for tissue engineering or modeling. For example, deposition of bone sialoprotein, a member of the small integrin-binding ligand, N-linked glycoprotein family, represents the first step of bone formation in ectopic transplantation systems in vivo. The use of mineralized scaffolds for guiding bone tissue engineering has revealed unexpected manners in which the scaffold and cells interact with each other, so that a complex interplay of integration and disintegration of the scaffold ultimately results in efficient and desirable, although unpredictable, effects. Likewise, the manner in which biomaterial scaffolds are "resorbed" by osteoclasts in vitro and in vivo highlights more complex scenarios than predicted from knowledge of physiological bone resorption per se. Investigation of novel biomaterials for bone engineering represents an essential area for the design of tissue engineering strategies

    Tympano-mastoid cholesterol granuloma: case report and review of the literature

    Get PDF
    Cholesterol granuloma (CG) is a rare condition histological consisting of a foreign body, giant cell reaction to cholesterol crystals and haemosiderin derived from the ruptured of the erythrocytes. A 25-year-old man came to our Department presenting signs and symptoms of tympano-mastoid cholesterol granuloma. He showed all the specific sign and symptoms of the disease. However, considering the lack of literature regarding TMCG, this study was performed with the aim of presenting the main characteristics of tympano-mastoid CG, describing the case report and reviewing the literature

    From stem cells to bone-forming cells

    Get PDF
    Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases

    Naso-ethmoidal phosphaturic mesenchymal tumor: a rare tumor site for an uncommon paraneoplastic syndrome

    Get PDF
    Mesenchymal Phosphaturic Tumors (MPTs) are the most common cause of an uncommon paraneoplastic syndrome known as Tumor Induced Osteomalacia (TIO). They typically occur in soft tissues and bone and in less than 5% in the head and neck region where the naso-ethmoidal is rarely involved. The presentation of the case includes also the analysis of the expression by RT-PCR of two “phosphatonins” that are known to be involved in the development of the syndrome. For the rarity of MPTs in the head and neck, otolaryngologists and maxillofacial surgeons might not be familiar with these tumors and with TIO whose knowledge is mandatory for the appropriate clinical work-up and treatment of the affected patients

    Natural versus anthropic influence on north adriatic coast detected by geochemical analyses

    Get PDF
    This study focused on the geochemical and sedimentological characterization of recent sediments from two marine sites (S1 and E1) located in the North Adriatic Sea, between the Po River prodelta and the Rimini coast. Major and trace metal concentrations reflect the drainage area of the Po River and its tributaries, considered one of the most polluted areas in Europe. Sediment geochemistry of the two investigated sites denote distinct catchment areas. High values of Cr, Ni, Pb and Zn detected in sediments collected in the Po River prodelta (S1 site) suggest the Po River supply, while lower levels of these elements characterize sediments collected in front of the Rimini coast (E1 site), an indication of Northern Apennines provenance. Historical trends of Pb and Zn reconstructed from the sedimentary record around the E1 site document several changes that can be correlated with the industrialization subsequent to World War II, the implementation of the environmental policy in 1976 and the effects of the Comacchio dumping at the end of 1980. At the S1 site, the down core distributions of trace elements indicate a reduction of contaminants due to the introduction of the Italian Law 319/76 and the implementation of anti-pollution policies on automotive Pb (unleaded fuels) in the second half of the 1980s

    Sporadic high-grade malignant peripheral nerve sheath tumor of the hypoglossal nerve

    Get PDF
    Malignant tumors of peripheral nerve sheaths (MPNSTs) are rare malignant soft tissue tumors arising either from a peripheral nerve or from a pre-existing benign nerve sheath tumor. They occur most often in the context of Neurofibromatosis type-1 (NF-1) and are characterized by poor prognosis and aggressive behavior with a high rate of recurrence and distant metastases. We describe a 50-year-old woman who presented with right neck swelling, progressive dysphagia and tongue paresis. Imaging analysis revealed a mass involving the right parapharyngeal space. The tumor was excissed through a transcervical approach. At surgery, the tumor was strictly adherent to the hypoglossal nerve. Pathologic evaluation of the mass revealed a high-grade MPNST. Based on the pathological diagnosis, a clinical work-up for NF-1 was performed but it resulted negative. Occurrence of sporadic high-grade MPNST in the parapharyngeal space is rare and development from the hypoglossal nerve exceptional. As far as we know, only in two cases, both with clinical features consistent with NF1, the tumor was reported to be arised from the hypoglossal nerve

    Intra-articular injection of vitamin A: a rabbit model to study osteoarthrosis

    Get PDF
    An experimental model of osteoarthrosis (OA) induced by injection of vitamin A in knees of rabbits is presented.  This model represents a modification and improvement of a preexisting one (Boni et al., 1977;  Benazzo et al., 1982) based on a higher number of vitamin A injections. In our model, two vitamin A injections  were sufficient to induce OA without exposure of the subchondral bone. The advantages of this model  are: 1) the maintaining of articular cartilage could make the experimental joints suitable to test the reparative  efficiency of candidate intra-articular pharmacological treatments, 2) animal stress and the risk of  infections are strongly reduced in compliance with European legislation on laboratory animal welfare.

    Plasmonic lenses for tunable ultrafast electron emitters at the nanoscale

    Get PDF
    Simultaneous spatiotemporal confinement of energetic electron pulses to femtosecond and nanometer scales is a topic of great interest in the scientific community, given the potential impact of such developments across a wide spectrum of scientific and industrial applications. For example, in ultrafast electron scattering, nanoscale probes would enable accurate maps of structural dynamics in materials with nanoscale heterogeneity, thereby leading to an understanding of the role of boundaries and defects on macroscopic properties. On the other hand, advances in this field are mostly limited by the brightness and size of the electron source. We present the design, fabrication, and optical characterization of bullseye plasmonic lenses for next-generation ultrafast electron sources. Using electromagnetic simulations, we examine how the interplay between light-plasmon coupling, plasmon propagation, dispersion, and resonance governs the properties of the photoemitted electron pulse. We also illustrate how the pulse duration and strength can be tuned by geometric design and predict that sub-10-fs pulses with nanoscale diameter can be achieved. We then fabricate lenses in gold films and characterize their plasmonic properties using cathodoluminescence spectromicroscopy, demonstrating suitable plasmonic behavior for ultrafast nanoscale photoemission

    In-Depth NMR Investigation of the Magnetic Hardening in Co Thin Films Induced by the Interface with Molecular Layers

    Get PDF
    The hybridization of the surface orbitals of thin ferromagnetic layers with molecular orbitals represents a soft but efficient technology that is able to induce in ferromagnetic component radical modifications of the key magnetic parameters, such as magnetization, magnetic anisotropy, and others. These effects are investigated in 7 nm thick polycrystalline Co films interfaced with C-60 and Gaq(3) molecular layers by combining Co-59 Ferromagnetic nuclear resonance spectroscopy (FNR) and magneto-optic kerr effect (MOKE) techniques. It is demonstrated that the surface hybridization produces a significant magnetic hardening with respect to a reference Co/Al system and that the molecule-induced effects modify the magnetic properties of entire Co layer, propagating for several nm from the interface. The FNR spectroscopy also reveals a reconstruction of the magnetic environment at the cobalt surface, whose observation in polycrystalline films is especially intriguing. The results shed new and unexpected light on the interfacial physics in such systems, whose understanding necessitates further experimental and theoretical research
    • …
    corecore