771 research outputs found

    Dimensioning Renewable Energy Systems to Power Mobile Networks

    Get PDF
    To face the huge increase in the mobile traffic demand, denser cellular access networks are extensively deployed by mobile operators, entailing high cost for energy supply. Hence, renewable energy (RE) sources are often adopted to power base stations (BSs), in order to make them more self-sufficient and reduce the energy bill. Nevertheless, sizing an RE generation system is a critical task, and the dimensioning methods available in the literature are based on simulation or optimization approaches, hence resulting time consuming or computationally complex. This paper proposes and validates a simple still effective analytical method that, based on the location dependent mean value and variance of RE production, allows to find feasible combinations of photovoltaic (PV) panel and battery sizes, suitable to power a BS and decrease the storage depletion probability below a target threshold. Furthermore, the application of this method highlights the role of RE production variance. Higher values of the variance require larger PV panels, almost doubled with respect to locations with low variance. However, only locations with higher variance benefit from increasing the battery size and relaxing the constraint on energy self-sufficiency, with the scope of reducing the required PV panel capacity and the capital expenditures

    Novel closed-loop approaches for precise relative navigation of widely separated GPS receivers in LEO

    Get PDF
    This paper deals with the relative navigation of a formation of two spacecrafts separated by hundreds of kilometers based on processing dual-frequency differential carrier-phase GPS measurements. Specific requirements of the considered application are high relative positioning accuracy and real-time on board implementation. These can be conflicting requirements. Indeed, if on one hand high accuracy can be achieved by exploiting the integer nature of double-difference carrier-phase ambiguities, on the other hand the presence of large ephemeris errors and differential ionospheric delays makes the integer ambiguities determination challenging. Closed-loop schemes, which update the relative position estimates of a dynamic filter with feedback from integer ambiguities fixing algorithms, are customarily employed in these cases. This paper further elaborates such approaches, proposing novel closed loop techniques aimed at overcoming some of the limitations of traditional algorithms. They extend techniques developed for spaceborne long baseline relative positioning by making use of an on-the-fly ambiguity resolution technique especially developed for the applications of interest. Such techniques blend together ionospheric delay compensation techniques, nonlinear models of relative spacecraft dynamics, and partial integer validation techniques. The approaches are validated using flight data from the Gravity Recovery and Climate Experiment (GRACE) mission. Performance is compared to that of the traditional closed-loop scheme analyzing the capability of each scheme to maximize the percentage of correctly fixed integer ambiguities as well as the relative positioning accuracy. Results show that the proposed approach substantially improves performance of the traditional approaches. More specifically, centimeter-level root-mean square relative positioning is feasible for spacecraft separations of more than 260 km, and an integer ambiguity fixing performance as high as 98% is achieved in a 1-day long dataset. Results also show that approaches exploiting ionospheric delay models are more robust and precise of approaches relying on ionospheric-delay removal techniques. © 2013 IAA

    An Improved Fire Fly Algorithm to Solve Economic Load Dispatch Problem including Practical Constraints

    Get PDF
    The main objective of Economic Load Dispatch Problem of power generation is to schedule the committed generating units optimally so as to meet the required load demand while satisfying all the units with equal and inequality constraints. In this Paper an improved firefly algorithm has been implemented for the solution of economic load dispatch problem with non-smooth fuel cost curves considering the transmission loss coefficients and emission cost coefficientsbased on new version of firefly algorithm.Itis one of the evolutionary algorithm which is inspired by the idealized behavior of flashing characteristics of firefly to identify the nearest one. This approach considers the direct fireflies movement to global best if there is only one best solution in and around them. The effectiveness of the proposed method has been implemented to IEEE standard test system that demonstrates the capability of this approach in generating non dominated solutions of multi objective Economic Load Dispatch Problem

    Ionospheric path delay models for spaceborne GPS receivers flying in formation with large baselines

    Get PDF
    GPS relative navigation filters could benefit notably from an accurate modeling of the ionospheric delays, especially over large baselines (>100 km) where double difference delays can be higher than several carrier wavelengths. This paper analyzes the capability of ionospheric path delay models proposed for spaceborne GPS receivers in predicting both zero-difference and double difference ionospheric delays. We specifically refer to relatively simple ionospheric models, which are suitable for real-time filtering schemes. Specifically, two ionospheric delay models are evaluated, one assuming an isotropic electron density and the other considering the effect on the electron density of the Sun aspect angle. The prediction capability of these models is investigated by comparing predicted ionospheric delays with measured ones on real flight data from the Gravity Recovery and Climate Experiment mission, in which two satellites fly separated of more than 200 km. Results demonstrate that both models exhibit a correlation in the excess of 80% between predicted and measured double-difference ionospheric delays. Despite its higher simplicity, the isotropic model performs better than the model including the Sun effect, being able to predict double differenced delays with accuracy smaller than the carrier wavelength in most cases. The model is thus fit for supporting integer ambiguity fixing in real-time filters for relative navigation over large baselines. Concerning zero-difference ionospheric delays, results demonstrate that delays predicted by the isotropic model are highly correlated (around 90%) with those estimated using GPS measurements. However, the difference between predicted and measured delays has a root mean square error in the excess of 30 cm. Thus, the zero-difference ionospheric delays model is not likely to be an alternative to methods exploiting carrier-phase observables for cancelling out the ionosphere contribution in single-frequency absolute navigation filters

    Real-time relative positioning of spacecraft over long baselines

    Get PDF
    This paper deals with the problem of real-time onboard relative positioning of low Earth orbit spacecraft over long baselines using the Global Positioning System. Large inter-satellite separations, up to hundreds of kilometers, are of interest to multistatic and bistatic Synthetic Aperture Radar applications, in which highly accurate relative positioning may be required in spite of the long baseline. To compute the baseline with high accuracy the integer nature of dual-frequency, double-difference carrier-phase ambiguities can be exploited. However, the large inter-satellite separation complicates the integer ambiguities determination task due to the presence of significant differential ionospheric delays and broadcast ephemeris errors. To overcome this problem, an original approach is proposed, combining an extended Kalman filter with an integer least square estimator in a closed-loop scheme, capable of fast on-the-fly integer ambiguities resolution. These integer solutions are then used to compute the relative positions with a single-epoch kinematic least square algorithm that processes ionospheric-free combinations of de-biased carrier-phase measurements. Approach performance and robustness are assessed by using the flight data of the Gravity Recovery and Climate Experiment mission. Results show that the baseline can be computed in real-time with decimeter-level accuracy in different operating conditions

    Investigating The Physics Case of Running a B-Factory at the Y(5S) Resonance

    Get PDF
    We discuss the physics case of a high luminosity B-Factory running at the Y(5S) resonance. We show that the coherence of the B meson pairs is preserved at this resonance, and that Bs can be well distinguished from Bd and charged B mesons. These facts allow to cover the physics program of a traditional B-Factory and, at the same time, to perform complementary measurements which are not accessible at the Y(4S). In particular we show how, despite the experimental limitations in performing time-dependent measurements of Bs decays, the same experimental information can be extracted, in several cases, from the determination of time-integrated observables. In addition, a few examples of the potentiality in measuring rare Bs decays are given. Finally, we discuss how the study of Bs meson will improve the constraints on New Physics parameters in the Bs sector, in the context of the generalized Unitarity Triangle analysis.Comment: 47 pages, 22 figure

    Household users cooperation to reduce cost in green mobile networks

    Get PDF
    The staggering mobile traffic growth is leading to a huge increase of operational costs for Mobile Operators (MOs) due to power supply. In a Smart Grid (SG) scenario, where Demand Response (DR) strategies are widely adopted to better balance the Demand-Supply mismatch, new opportunities arise for MOs, that can receive some monetary rewards for accomplishing the SG requests of periodically increasing or decreasing their energy consumption. This study considers a mobile network that exploits Renewable Energy (RE) to power the BSs and Resource on Demand (RoD) strategies to dynamically adapt the number of active radio resources to the varying traffic demand, in order to better react to the SG requests. On top of this, the purpose of this work is investigating the effects of the cooperation between Household Customers (HCs) engaged in the DR program and the mobile network. Based on a predefined agreement, HCs cooperate with the MO in order to increase its capability to accomplish the SG requests, receiving in return some benefits when stipulating the Internet provisioning contract with the MO. HCs can contribute to achieving the MO goals by means of two techniques. On the one hand, a fraction of the electric loads that are postponed by the HCs when the SG asks for a reduction of the energy consumption can be shifted on behalf of the mobile network, that will receive the corresponding monetary rewards (HC Trade - HCT). On the other hand, HCs can accept to handle some additional mobile traffic, that is moved to their own WiFi Access Points from the BSs, in order to reduce the energy load of the mobile network (WiFi Offloading - WO).Our results show that, although HCT alone provides limited saving in the energy bill due to the poor attitude of HCs to postpone their electric loads, up to 18% of cost saving can be achieved under full HCs cooperation when HCT is combined with WO. The effects of HCs cooperation can be further enhanced by installing larger sized RE generators, allowing to significantly reduce the energy bill up to more than 90%

    Validation on flight data of a closed-loop approach for GPS-based relative navigation of LEO satellites

    Get PDF
    This paper describes a carrier-phase differential GPS approach for real-time relative navigation of LEO satellites flying in formation with large separations. These applications are characterized indeed by a highly varying number of GPS satellites in common view and large ionospheric differential errors, which significantly impact relative navigation performance and robustness. To achieve high relative positioning accuracy a navigation algorithm is proposed which processes double-difference code and carrier measurements on two frequencies, to fully exploit the integer nature of the related ambiguities. Specifically, a closed-loop scheme is proposed in which fixed estimates of the baseline and integer ambiguities produced by means of a partial integer fixing step are fed back to an Extended Kalman Filter for improving the float estimate at successive time instants. The approach also benefits from the inclusion in the filter state of the differential ionospheric delay in terms of the Vertical Total Electron Content of each satellite. The navigation algorithm performance is tested on actual flight data from GRACE mission. Results demonstrate the effectiveness of the proposed approach in managing integer unknowns in conjunction with Extended Kalman Filtering, and that centimeter-level accuracy can be achieved in real-time also with large separations. (c) 2013 IAA. Published by Elsevier Ltd. All rights reserved

    Integrating Aerial Base Stations for sustainable urban mobile networks

    Get PDF
    The extensive densification of mobile networks is increasing the network energy consumption and leading to remarkable economical and sustainability concerns. At the same time, regulatory and physical constraints, especially in urban environments, may limit the network expansion and the free installation of Base Stations (BSs). In this context, High Altitude Platform Stations (HAPSs) are emerging as a promising solution to host aerial BSs that can provide additional capacity over a wide geographical area, to offload the on-ground mobile network and support a sustainable transition towards the 6G era. This paper investigates the potential of HAPS offloading to reduce the energy demand from the grid and the operational cost of mobile networks. Our results highlight the effectiveness of HAPS offloading in reducing the size of the RE supply that is required to achieve grid energy reduction on the terrestrial network, thus enhancing the feasibility of a sustainable evolution towards 6G networks. Different allocation strategies are designed and analyzed under several configuration settings, to dynamically adapt the HAPS capacity to the traffic variability in space and over time. A fine tuning of the strategy settings is proved effective in trading off physical constraints, operational cost, sustainability goals, and Quality of Service

    Ionospheric Delay Handling for Relative Navigation by Carrier-Phase Differential GPS

    Get PDF
    The paper investigates different solutions for ionospheric delay handling in high accuracy long baseline relative positioning by Carrier-Phase Differential GPS (CDGPS). Standard literature approaches are reviewed and the relevant limitations are discussed. Hence, a completely ionosphere-free approach is proposed, in which the differential ionospheric delays are cancelled out by combination of dual frequency GPS measurements. The performance of this approach is quantified over real-world spaceborne GPS data made available by the Gravity Recovery and Climate Experiment (GRACE) mission and compared to the standard solution
    • …
    corecore