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Abstract 

This paper deals with the relative navigation of a formation of two spacecrafts separated of hundreds of kilometers 

based on processing dual-frequency differential carrier-phase GPS measurements. Specific requirements of the 

considered application are high relative positioning accuracy and real-time on board implementation. These can be 

conflicting requirements. Indeed, if from one hand high accuracy can be achieved by exploiting the integer nature of 

double-difference carrier-phase ambiguities, on the other hand the presence of large ephemeris errors and differential 

ionospheric delays makes the integer ambiguities determination challenging. Closed-loop schemes, which update the 

relative position estimates of a dynamic filter with feedback from integer ambiguities fixing algorithms, are customarily 

employed in these cases. This paper further elaborates such approach, proposing novel closed loop techniques aimed at 

overcoming some of the limitations of traditional algorithms. They extend techniques developed for spaceborne long 

baseline relative positioning by making use of an on-the-fly ambiguity resolution technique especially developed for the 

applications of interest. Such techniques blend together ionospheric delay compensation techniques, nonlinear models of 

relative spacecraft dynamics, and partial integer validation techniques. The approaches are validated using flight data 

from the Gravity Recovery and Climate Experiment (GRACE) mission. Performance is compared to that of the traditional 

closed-loop scheme analyzing the capability of each scheme to maximize the percentage of correctly fixed integer 

ambiguities as well as the relative positioning accuracy. Results show that the proposed approach substantially improves 

performance of the traditional approaches. More specifically, centimeter-level root-mean square relative positioning is 

feasible for spacecraft separations of more than 260 km, and an integer ambiguity fixing performance as high as 98% is 

achieved in a one-day long data set. Results also show that approaches exploiting ionospheric delay models are more 

robust and precise of approaches relying on ionospheric-delay removal techniques.  
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1 Introduction 

Formation flying is considered a key technology enabling a wide spectrum of scientific applications which cannot be 

realized with a single large satellite. Indeed, payload and operating requirements of advanced space mission concepts, 

like spaceborne microwave remote sensing and geodesy, multidimensional magnetosphere and plasmasphere 

investigation, call for observations and measurements taken simultaneously at largely separated points in space. These 

innovative concepts can take great advantage from flying multiple platforms due to the possibility of distributing payload 

functionality among them, with the result of improving system capability, flexibility and redundancy. In addition, the 

possibility of using smaller platforms can reduce the overall mission cost. Microwave remote sensing techniques based 

on bistatic or multistatic Syntetic Aperture Radar (SAR) which can greatly benefit from using formation flying 

technologies include Along-Track Interferometry (ATI) for Moving Target Indication (MTI) [1], Cross-track 

Interferometry (XTI) for digital elevation model (DEM) generation [2], tomography and sparse aperture synthesis [3], 



Large Baseline Bistatic (LBB) SAR for stereo-radargrammetry [4]-[5], MTI and oceanography [6]. These applications, 

indeed, rely on processing simultaneous radar images of the same scene produced by two or more physically separated 

antennas. Depending on the particular application, the determination of the inter-satellite separation with high precision,, 

also for very long baselines (i.e. hundreds of kilometers), may be required (e.g. LBB SAR applications) [4]-[6]. The 

desired separation is realized with a specific design of the satellites’ absolute orbits, determining a given relative orbital 

path. In this regard, different formation geometries can be exploited: from a simpler leader-follower configuration for 

ATI [1], in which the satellites are separated by a few kilometers, to helix or pendulum configurations for XTI [2], and 

pendulum formations for LBB SAR [4]-[6], in which the satellite separation can vary from a few hundreds of meters to 

hundreds of kilometers. 

When dealing with LEO formations with large separations, dual-frequency Carrier-phase differential GPS (CDGPS) 

is the most promising solution for precise relative navigation [7]. Indeed, exploiting the integer nature of Double 

Difference (DD) carrier-phase observables allows, in principle, determining the baseline with high accuracy, up to the 

millimeter/centimeter level. Forming DD measurements makes it possible to cancel common errors of the GPS receivers 

to a large extent, as well. However, a number of challenging issues arises: from managing rapid variations of GPS satellites 

in common view because of the high orbital speed of the receivers, to dealing with significant broadcast ephemeris errors 

and differential ionospheric delays due to the large separation. These, indeed, can easily spoil accuracy and robustness of 

the integer ambiguities (IA) solution, seriously degrading the baseline estimate. 

The open literature proposes many works dealing with CDGPS-based relative navigation of LEO formations, however 

the most part describes approaches suitable for short-baseline applications (i.e. up to tens of kilometers), including real-

time on board implementation [8]-[10]. Only few authors investigate approaches for precise relative positioning of 

satellites separated of hundreds of kilometers, even though for post-processing reconstruction of the relative orbit [7],[11] 

or on-board relative positioning but using precise ephemeris products [12]. These works demonstrate that sub-centimeter 

relative positioning accuracy on flight data can be achieved with closed-loop approaches in which all the fixed integer 

ambiguities are fed back to sharpen the float estimate provided by an Extended Kalman Filter (EKF). Moreover, random 

walk models of the differential ionospheric delays and highly complex models of the satellites’ orbital dynamics are 

introduced to support ambiguity resolution. These approaches can be not suitable for real-time on-board applications. 

Indeed, apart from the need of reducing dynamic model complexity, which worsens the relative positioning accuracy of 

at least an order of magnitude [9], such closed-loop schemes, which can be effective in improving filter performance over 

long baselines, lack of robustness to wrongly fixed integer ambiguities, ultimately resulting into divergence of the 

solution, unless reliable integer validation tests are implemented [13]. Hence, new solutions have to be investigated to 

overcome these limitations.  

This paper describes two novel closed-loop approaches developed for precise relative positioning of two satellites 

flying with a separation of hundreds of kilometers. The proposed approaches differ from standard closed loop ones 

because the integer ambiguities resolution is performed separately from the computation of the relative position. This 

allows avoiding the necessity to fix in closed-loop the whole ambiguity vector. More specifically, DD Wide Lane (WL) 

and L1 integer ambiguities are computed as the solution of a filter which combines an EKF and a standard Integer Least-

Square (ILS) estimator into a closed-loop scheme. However, only fixed WL ambiguities are fed back to sharpen the float 

estimate, whereas L1 ambiguities are estimated outside the closed loop with an additional ILS step. Resolved DD WL 

and L1 ambiguities are used to de-bias ionospheric-free combinations of carrier-phase measurements, which are then 

processed within a kinematic least-square algorithm, determining the baseline vector with high accuracy. To support the 

integer ambiguities resolution, different strategies are implemented to deal with DD ionospheric delays. In one approach 



ionospheric terms are specifically modeled in the filter assuming a variable Vertical Total Electron Content (VTEC) along 

the baseline, whereas in the other approach the ionospheric effect is removed by suitable combinations of dual-frequency 

DD measurements. Flight data from the Gravity Recovery and Climate Experiment (GRACE) mission are used to assess 

proposed approach performance in comparison with a reference standard closed-loop scheme. 

2 CDGPS by closed-loop EKF 

A closed-loop scheme for integrating an EKF and an integer resolution approach has been proposed in [14] and it is 

considered herein as a reference solution for real-time onboard CDGPS in long baseline applications. The main features 

of this reference scheme are briefly recalled in the following, and the interested reader is referred to [14] for further details. 

In this mixed integer continuous dynamical filter (see Fig.1) the EKF is in charge of generating the float estimate, that 

is, the estimation of all the variables as real-valued, integer ambiguities included. Starting from the float estimate, the 

LAMBDA method [15] is used to conduct the integer searching step. Finally, the integer nature of the validated 

ambiguities is exploited to correct the real-valued float estimate, thus yielding the fixed estimate that is fed back to the 

EKF to sharpen the solution in the following time instants. 

 

Figure 1. Schematic representation of the reference closed-loop EKF for CDGPS. 

 

In real-time onboard relative positioning, where precise state initialization and high accuracy dynamic and stochastic 

models are typically not available [9], closed-loop schemes represent a reference method to keep the solution accurate 

and, at the same time, stable and robust. Specifically, this is achieved when correct integer ambiguities are used to 

calculate the fixed solution. However, depending on the estimated float ambiguities, and on the related covariance matrix, 

there is a non-null probability to compute wrong integer estimates. From a theoretical point of view, it is possible to show 

that, under the assumption of a Gaussian float estimate, the distribution of the integer estimates derived by LAMBDA is 

centered about the mean of the float ambiguity [16]. If the float ambiguity is assumed to be unbiased, its distribution is 

thus centered about the true integer value. As a consequence, the probability to derive wrong estimates is very low when 

the float distribution is sufficiently sharp w.r.t. the carrier wavelength and unbiased. This does not usually happen in real-

world data, where the float ambiguity distribution can be both biased, converging to a non integer value, and not sharp 

enough. When large baseline applications are considered, this bias is dominated by uncompensated differential errors 

such as differential ionospheric delay [17] and differential broadcast ephemeris error. The capability of the EKF to yield 

accurate float ambiguity estimates in real-time onboard operation, when accurate ephemeris are not available, can be 

improved by modeling the ionospheric effect as part of the state vector. This is the approach adopted in the reference 

solution [14], based on Lear’s isotropic mapping function [18], which models the ratio of the slant Total Electron Content 

(TEC) to the vertical TEC (VTEC) as a function of the elevation on the horizon of GPS satellites as measured by GPS 

receivers. 



With specific reference to a formation of two satellites, named chief and deputy, the EKF state vector of the reference 

solution is 
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where b’ includes the relative position vector, computed from the chief to the deputy, and the relative velocity vector in 

ECEF (Earth Centred Earth Fixed) reference frame, VTEC is the vector comprising the two vertical total electron contents 

above the receivers, aw and a1 represent the vector of wide-lane (WL) and L1 DD ambiguities, respectively. The 

corresponding EKF measurement vector is  
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where 
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P  are DD pseudorange measurement vectors, and 
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j
L  are DD carrier phase measurement vectors. 

The superscript j represents the reference GPS satellite, conventionally named pivot, and selected to calculate DD 

observables from undifferenced ones. The subscripts 1 and 2 correspond to L1 and L2 frequency, respectively. In eqs. 

(1)-(2) p is the number of DD observations of each kind. The relative dynamic model relies on Keplerian relative orbital 

motion corrected with differential J2 effects. VTECs above the receivers are modeled as two scalar first-order Gauss-

Markov processes with equal correlation time scale, whereas cycle ambiguities are modeled as random constant plus 

random walk processes. The utilization of two VTECs and Lear’s mapping function allows estimating all DD ionospheric 

delays as a function of only two variables: in this way the observability of the integer ambiguity by the reference solution 

is enhanced. Hence, the reference solution’s EKF non linear observation model y=h(x) can be written as 
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where Ip is the p-dimensional identity matrix, j

CD
ρ is the vector of the DD ranges for all the visible GPS satellite vehicles, 

considering the pivot j, the chief satellite C and the deputy satellite D,λ1 and λ2 are L1 and L2 signal wavelength, 

1 2γ λ λ= .  

Figure 2 describes the reference strategy to derive the fixed solution. Wide-lane and L1 integer estimates derived by 

LAMBDA are screened by Partial Integer Validation (PIV) tests. In more detail, four different tests are used to validate 

the ambiguities. The first two tests scan WL integer estimates and the last two work on L1 ambiguities. A cascade strategy 

is implemented, i.e. L1 tests are performed only for those couples with validated WL ambiguity. The first WL test 

evaluates the instantaneous measurement residual of Melbourne-Wubbena observables [19]-[20] and is passed when the 

residual is lower than a pre-defined threshold. The second WL test checks the difference between the float and the integer 

estimates of wide-lane ambiguity. A similar approach is adopted to test L1 ambiguity using the ionospheric-free DD 

carrier-phase instantaneous measurement residual and the difference between the float and the integer value of narrow 

lane combination of WL and L1 ambiguity [14] 

Validated ambiguities are used to compute the fixed solution, based on the correlation between the relevant float 

ambiguity and the remaining variables of the state vector [16]: 
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where the baseline vector b comprises all the state vector components but the validated ambiguities (both WL and L1) 

that are included in the vector a. The symbols ˆ and ˘ refer to the float and fixed estimates, respectively, and Pcd stands 

for the float covariance matrix between the generic variables c and d. As a consequence of the considered PIV strategy 

the closed-loop EKF has to deal with a mixed array of real-valued variables, fixed, and unfixed ambiguities, representing 

both not yet validated ambiguities and ambiguities related to newly acquired satellites. 

 

Figure 2. Reference strategy for estimating the fixed solution and validated integer ambiguities. 

 

In conclusion it is important to remark that, thanks to the validated ambiguities, the fixed solution is expected to be 

sharper than the float one, thus improving the capability to correctly validate new ambiguities in the following time 

epochs. Nonetheless, the relative positioning accuracy of the fixed solution is still limited by the accuracy of Lear’s 

mapping function that can be poor, especially over polar areas [17]. For this reason, when at least four WL and L1 

ambiguities (referring to the same DD couple of GPS Satellite Vehicles) are validated the debiased ionospheric free 

combination of carrier-phase measurements is used to refine the relative positioning solution by a conventional Weighted 

Least-Squares Algorithm (WLSQ) as shown in Fig.1. 

 

3 Alternative closed-loop schemes 

The reference solution for CDGPS presented in the previous section has been tested on real world long-baseline 

spaceborne GPS measurements showing very good performance, characterized by root mean square (rms) baseline vector 

errors of few centimeters and maximum errors always smaller than one meter [14]. However, this performance cannot be 

always guaranteed for diverse operative conditions, such as ionospheric activity, observation geometry and so on. The 

reasons for this lack of robustness to different operative conditions deals with the feed-back logic and the considered 

ionospheric model. 

Concerning the first point, the cascade validation of WL and L1 ambiguities represents an effective way to improve 

the accuracy of the fixed solution but it can be extremely sensitive to wrongly validated integer ambiguities. A very 

limited number of wrong ambiguities can cause the divergence of the closed-loop EKF solution. For this reason very 

restrictive thresholds must be set when performing the validation tests (especially for validating L1 ambiguities). This 

results in relatively low percentages of validated integers and therefore in degraded relative positioning accuracy under 

specific, very challenging, operative conditions. 

With reference to the ionospheric delays, it has been noted that some conditions exist in which the accuracy of Lear’s 

mapping function can be considered a limiting factor. On the contrary, it is well-known that, when dual-frequency 

measurements are available, as in semi-codeless GPS receivers, different measurement combinations can be used to 

remove the ionospheric contribution but preserving the integer nature of carrier-phase ambiguities. 



The following subsections focus on two alternative closed-loop EKF schemes aimed at coping with these critical 

aspects of the reference solution. 

 

3.1 Wide-lane closed-loop EKF 

In section 2 an example of partial integer validation approach was presented. Anyway partial validation of the integer 

estimates derived by the LAMBDA method presents several problems [21]-[22] that still remain unsolved [23]-[24]. From 

a theoretical perspective, partial validation becomes a viable solution when the screened individual ambiguities are not 

(or faintly) correlated. In this regard, the results presented in [25] suggest that the WL ambiguities' estimates have almost 

uncorrelated variance, especially when the ionosphere error contribution is higher than the code measurement noise. In 

long-baseline applications, the ionospheric delay contribution to the DD measurements can be in the order of several tens 

of centimeters [17], well above the code measurement noise of state-of-the-art spaceborne GPS receivers. From a practical 

point of view, in such applications WL ambiguities can be reasonably screened individually by partial integer validation 

tests. This is not true for L1 ambiguities, which do not have, in general, any decorrelating property. As such, individual 

screening of L1 ambiguities is not backed up by a theoretical framework, and cannot be expected to be effective as per 

WL ambiguities. 

According to these considerations, the first improved approach is based on the reference one, making use of all the 

models presented in section 2, but employs a different strategy for feeding back the integer fixing results to the EKF. 

More precisely, a new technique for partial integer validation, shown in Fig. 3, has been developed, aiming at partial 

validation in closed loop only of WL ambiguities. In this approach, only validated WL ambiguities are used to compute 

the fixed solution which is then fed back to the EKF. Even though only a limited refinement of the baseline estimate is 

obtained, the major effect of this alternative WL-only closed-loop scheme is a further sharpening of the integer ambiguity 

float estimates, with respect to the reference solution, for both the WL and the L1 ambiguities. 

 

Figure 3. Alternative strategy for estimating the fixed solution and the integer ambiguities. 

 

In more detail, L1 ambiguities corresponding to validated WL ambiguities and resulting from the application of Eq. 

(4), denoted as “fixed L1” in Fig.3, are processed by a secondary LAMBDA. The resulting L1 integer ambiguities are 

assumed valid and therefore ready to feed the WLSQ algorithm. Concerning this, it is important to note that the alternative 

WL-only closed-loop scheme is not sensitive to wrong estimates of L1 ambiguities, which are never fixed within the 

closed-loop EKF. From this point of view, it is potentially able to recover wrongly fixed L1 integer ambiguities, which 

are computed at each time step. Thus, it can be proved to be more robust than the reference solution. 

 

3.2 Wide-lane closed-loop EKF without ionospheric delays 

The second improved approach proposed in this paper further elaborates on the one presented in the previous section. 

In addition to providing WL-only feedback to the EKF, this approach also treats ionospheric delays in a different manner 



w.r.t. the reference one. The reference solution models DD ionospheric delays as a function of chief and deputy VTEC 

by Lear’s isotropic mapping function. For this model, RMS prediction errors in the order of few centimeters have been 

verified on large baseline satellite data [17], even if larger errors can be experienced locally, especially over polar areas. 

However, the availability of dual-frequency GPS measurements makes it possible to form different measurement 

combinations that are able to remove completely the first-order ionospheric delay from the observation model, without 

the need of compensating it by estimation within the EKF state vector. In this section a different formulation of the closed-

loop EKF is presented, processing only such “iono-removed” measurements. The state vector comprises thus only 

baseline, baseline rate, wide-lane, and L1 ambiguities, and its dynamics is governed by the same models of section 2, 

obviously excluding the VTEC ones. 
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For obtaining an observation model without ionospheric delays, suitable combinations of DD measurements must be 

selected. GPS measurement combinations which allow for an exact cancellation of first-order ionospheric delays can be 

classified in three main families: ionospheric-free combinations [26], GRoup And PHase Ionospheric Corrections 

(GRAPHIC) [27], and Melbourne-Wubbena combinations [19]-[20]. The ionospheric-free combination (IF) is the most 

natural and diffuse combination for eliminating the ionospheric delay and it is based on combining observations of the 

same type on two carrier frequencies, exploiting the frequency dependence on the first-order ionospheric delay effect. 

With specific reference to the DD measurements reported in eq. (2), two different ionospheric-free combinations can be 

derived, namely ionospheric-free combinations of pseudorange measurements and of carrier-phase measurements. 

GRAPHIC combinations exploit the asymmetry of the ionospheric effect on group and phase propagation at the same 

frequency. Again, two GRAPHIC combinations can be calculated considering L1 and L2 frequency, respectively. Finally, 

Melbourne-Wubbena combinations represent an estimate of WL ambiguities and cancel the ionospheric delays by 

combination of all four types of observables. These three families produce five types of combinations, which are not 

linearly independent. Specifically, only three are linearly independent and therefore there is the need of selecting the three 

combinations the EKF has to process. With the aim of guaranteeing an accurate estimation of the baseline vector, but also 

a satisfactory observability of the entire state vector, ionospheric-free combination of carrier-phase measurements LIF, 

GRAPHIC combination on L1 frequency G1, and Melbourne-Wubbena combination MW, are selected, which can be 

derived from uncombined DD observables as follows 
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where pivot satellite j is not reported for simplicity, and λw, λn represent the wavelengths of wide-lane and narrow lane 

combinations, respectively. Combining the above definitions with the reference observation model in Eq.(3), the 

combined measurement vector y′:=(LIF
T, G1

T, MWT)T can be related to the “iono-removed” state vector, y′ = ,h′(x′) as 

follows 
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Starting from the specified dynamics and observation models, the iono-removed version of the closed-loop EKF (see 

Fig.1) can be implemented. With specific reference to the derivation of the fixed solution and the management of the 

integer ambiguities, the strategy presented in section 3.1 and outlined in Fig. 3 is assumed also for the iono-removed 

version of the closed-loop EKF, that is, only WL ambiguities are tested and, once validated, kept as integer deterministic 

parameters in the closed-loop EKF. 

4 Performance comparison on flight data 

The performance of the three closed-loop algorithms is evaluated on actual flight data made available by the Gravity 

Recovery and Climate Experiment (GRACE) mission, which consists of two identical satellites, GRACE A and GRACE 

B, in a leader-follower formation using near circular orbits [28]. A one-day long dataset from DOY18, 2009 has been 

selected from all available GRACE Level-1 B (L1B) data for the analysis presented in this paper. In DOY18 GRACE B 

leads the formation and GRACE A follows at a distance of 266.5 ± 1.8 km. The dataset comprises GPS L1B measurements 

at 0.1 Hz, Ka-Band Ranging System (KBR) data at 0.2 Hz , which allows estimating the true baseline at sub-millimeter 

accuracy [29], and GPS Navigation (GNV) L1B data at 1/60 Hz , which allows estimating the three-dimensional baseline 

in ECEF, but with a formal error in the order of few centimeters. All data are referred to the antenna phase center of the 

two receivers by applying lever-arm corrections, when necessary, and considering each spacecraft attitude, which is 

provided in GRACE L1B data as well. As with all GRACE Level 1B data, the time-tags are corrected to GPS time using 

GPS clock solutions computed in post-processing [30]. A data-editing step has been performed on GPS L1B data in order 

to detect and remove outliers in the pseudorange measurements and to discard all observations from GPS satellites whose 

elevation above the local horizon is smaller than 10 deg.  

Estimation performance is quantified by comparing the baseline estimated by each filter to the reference solution 

obtained by KBR (for the magnitude) and GNV data (for the baseline vector components). Because of the different 

features of the data, the baseline magnitude estimation error can be quantified with very high accuracy, whereas estimation 

of the three-dimensional error is reliable only for error values at least in the order of 10 cm. For providing additional 

insight into filters' performance, their capability of fixing the correct integer ambiguities is also analyzed. For this purpose, 

reference values of the integer ambiguities have been computed by exploiting the knowledge of the observation geometry 

provided by the KBR and GNV data. The adopted procedure is described in [17], to which we refer the interested reader.  

For comparing the performance of different positioning solutions over the same dataset it is essential that the compared 

solutions approximate the maximum attainable navigation performance of each filter to the same extent. Indeed, the 

accuracy of relative positioning solutions of EKF-based closed-loop schemes is heavily dependent on the value chosen 

for the tunable parameters, especially when true flight data are involved [9]. Thus, quantifying the maximum attainable 

performance of each of the three filters requires optimizing the setting of the tunable parameters, which has been 

performed by a stochastic optimization technique. More precisely, we have searched for a filter setting maximizing a 

performance metric related to the baseline estimation error over the selected dataset applying a randomized algorithm 

proposed in [31] to which we refer the interested reader. This algorithm is based on sampling the performance metric f(p) 

by a Monte Carlo (MC) technique applied to the tunable parameters vector p. The vector p includes conventional EKF 



parameters but also the thresholds to perform PIV [21]. Since the state vector and PIV strategy are different among the 

three considered filtering strategies, the tunable parameters are also different. For instance, the reference strategy requires 

setting four PIV thresholds [14], whereas only two thresholds are needed in both the alternative strategies [21]-[22]. 

Likewise, when VTEC is part of the state vector the relevant EKF tuning parameters must be set [21]. Concerning the 

performance metric, in the present work filter tuning is aimed at maximizing the number of fixed ambiguities (fixing rate) 

while minimizing the percentage of wrong integers (fail rate): when this is achieved, also the baseline estimation accuracy 

is, in general, maximized. 

For applying the MC sampling technique, the parameter vector p is fictitiously modeled as a stochastic variable. The 

maximum performance is then estimated by the maximum value among the samples, which can be guaranteed (in a 

probabilistic sense) to approximate the true maximum to a finite extent, depending on the number of samples used in the 

MC technique. By tuning all three relative navigation filters with the same optimization algorithm, the performance 

comparison presented in the following is not biased towards one of the positioning solutions because of tuning effects.  

The estimation performance of the three approaches is summarized in Table 1. The reference filter performance is 

improved by both the proposed approaches, with the WL closed-loop EKF, without ionosphere removal, yielding the best 

baseline estimation accuracy. 

 

Table 1. Estimation Performance Summary  

  Reference Approach C/L - WL C/L-WL, iono-removed 

Baseline Component 

Estimation Error Estimation Error Estimation Error 

Max, cm. RMS, cm. Max, cm. RMS, cm. Max, cm. RMS, cm. 

Magnitude (||B||) 93.7 16.1 35.8 4.2 85.5 8.6 

Along Track (Bx) 94.6 16.1 36.9 4.5 110.0 8.9 

Cross Track (By) 33.3 6.8 28.0 2.4 35.3 7.7 

Radial (Bz) 129.0 14.3 91.2 6.8 70.3 8.8 

Kin. Correction Availability 60.9% 96.3% 93.5% 

Ambiguity 

IA Estimation IA Estimation IA Estimation 

Fixing Rate, % Fail Rate, % Fixing Rate, % Fail Rate, % Fixing Rate, % Fail Rate, % 

WL ambiguities 78.1 0.0 98.0 0.0 93.4 0.0 

L1 ambiguities 66.9 3.9 98.0 3.6 93.4 21.2 

 

The reference approach performance is depicted in Figure 4, which shows the time histories of the baseline magnitude 

estimation error and of the fixed integer ambiguities. The baseline plot also highlights the time epochs in which the 

kinematic solution of the WLSQ algorithm in Figure 1 is not available, that is, when less than four WL and L1 are fixed 

to integer values. The other two plots provide indications on the integer fixing performance of the filter, computed using 

the IA reference values. More specifically, at each time epoch a color-coded bar is shown, which stacks the number of IA 

estimated by LAMBDA that are correct or wrong. For a limited amount of IA, it has not been possible to determine the 

reference value, even with the knowledge of the true geometry by GRACE L1B data products. These are denoted as 

unknown IA. The potentially correct ambiguities given by LAMBDA can or cannot be fixed within the EKF, depending 

on the validation tests outcome. The number of IA fixed within the EKF is also shown in Figure 4. 

Results clearly demonstrate how the reference solution is capable of highly accurate (i.e. at the cm-level) baseline 

estimation, as shown in [14], for extended periods of the day. However, under certain operative conditions, such as those 

encountered around 7AM, the feedback of the L1 ambiguities produces a detrimental effect: since a few L1 ambiguities 

are erroneously fixed, the overall EKF estimation starts to degrade. Because of the correlation among L1 and WL 



ambiguities, the latter also become increasingly erroneous, letting the baseline estimation error grow. This potentially 

divergent behavior is however recovered by the filter thanks to the use of partial integer validation tests. Indeed, the 

integer validation test based on the MW residual does not depend on the EKF estimate, but only on the measurements. 

Hence, it is capable of detecting the divergence of the WL estimate, and eventually to recover it as the operating conditions 

become again favorable.  

 

 

Figure 4. Reference approach performance: baseline norm estimation error (top), WL (middle) and L1 (bottom) 

IA fixing. 

 

Figure 5 shows the same results, but computed for the closed-loop approach in which only the WL integer ambiguities 

are fed back to the EKF and the differential ionospheric delay is specifically modeled. The baseline estimation 

performance is substantially improved with respect to the reference approach. The baseline estimation performance of the 

two filters is similar in the periods in which the reference approach yields a sharp estimate (e.g. around noon). However, 

the WL-only approach is more robust to the changing operating conditions, being capable of preserving a centimeter level 

accuracy throughout the dataset. This improvement is possible thanks to the capability of fully exploiting the mostly 

correct WL LAMBDA estimates. Indeed, the lack of erroneously fixed L1 ambiguities within the EKF allows relaxing 

the PIV tests for letting more WL ambiguities being fixed, which increase to almost 100% from the ~80% of the reference 

solution (see Table 1). This has a beneficial effect also on the quality of the L1 LAMDA estimates, which, as shown in 

Figure 5, are mostly correct. Recall that only the L1 ambiguities that have a valid WL counterpart are fixed to the relevant 

integer value. Moreover, such L1 IA are used only for computing the kinematic solution, but not for modifying the EKF 

estimate at later time instants (see Figure 3). Therefore their number is denoted by a dashed line in Figure 5. 



 

Figure 5. Performances of WL C/L approach: baseline norm estimation error (top), WL (middle) and L1 

(bottom) IA fixing. 

 

Finally, Figure 6 shows the performance of the WL-only closed-loop approach with iono-removal. Even though this 

approach does not introduce any residual error in the EKF baseline estimate due to the absence of an ionospheric delay 

model of finite accuracy, the overall baseline estimation performance is worse than the previous one. Interestingly, it is 

seen how the iono-removed approach is capable of a WL estimation performance close to the one of the closed loop WL 

filter with Lear’s model. As opposed to the previous approach, however, this WL estimation performance is obtained in 

spite of more than 20% of erroneous L1 ambiguities, which, when fixed outside the EKF, degrade the baseline estimated 

by the kinematic WLSQ algorithm. These results suggest that removing the ionospheric delay model from the observation 

model decreases the correlation between WL and L1 ambiguities. Hence, correctly fixing the WL IA does not allow 

sharpening the L1 ambiguities estimates as in the previous case. The degradation of the kinematic solution predominates 

over the benefits in the EKF baseline estimates that can be obtained from removing the ionospheric delay estimation error. 



 

Figure 6. Performances of WL C/L approach without ionospheric delays: baseline norm estimation error (top), 

WL (middle) and L1 (bottom) IA fixing. 

 

5 Conclusion 

This paper has focused on two approaches which can improve the performance of a CDGPS-based reference approach 

for the real-time, on-board, relative navigation of two LEO GPS receivers separated of hundreds of kilometers. State of 

the art approaches for this problem deeply integrate a dynamic filter, such as the EKF, with an integer estimator for fixing 

the carrier cycle ambiguities to their unknown integer values. Integration of the two estimators is performed feeding back 

to the EKF the results of the integer estimation problem, with the aim of sharpening the EKF estimate at later time instants. 

However, this closed-loop arrangement is prone to divergence of the estimates when erroneous integer ambiguities are 

incorporated within the EKF solution.  

Performance of a reference, closed-loop, relative navigation filter has been investigated on flight data from the 

GRACE mission, highlighting its shortcomings. Results prove that the reference approach is indeed capable of centimeter-

level accuracy in the baseline estimation, but this performance cannot be reasonably guaranteed under all operative 

conditions. Particularly challenging operative conditions, present in the analyzed dataset, let the baseline estimation error 

grow because of erroneous integer estimates of L1 ambiguities that are considered as exact values in the EKF. 

Nonetheless, a careful design of the integer validation strategy allows the filter to recover from this performance 

degradation as the operative conditions become again more favorable. 

Two approaches are proposed to increase the robustness of the reference solution to the variability of operative 

conditions. Both approaches do not feed back to the EKF all integer estimates of the cycle ambiguities, fixing to exact 

values only the integer solutions of wide-lane ambiguity combinations. L1 ambiguities are fixed to integer values at each 

time epoch outside the EKF for limiting the detrimental effect of their possibly erroneous estimation. Results show that 

this approach allows increasing the percentage of correctly fixed ambiguities of more than 25 % w.r.t. the reference 

approach, thus improving the baseline estimation RMS error of a factor of three.  



Compensation of the double-difference ionospheric delays is known to be one of the limiting factors in relative 

positioning over large baselines. In the two proposed approaches this problem is faced in two different ways: using a 

ionospheric delay model of centimeter-level accuracy, in one case, and exactly canceling first-order ionospheric effects 

by suitable combinations of double-difference measurements, in the other case.. Results show that removing the 

ionospheric delays from the observation model decreases the correlation between WL and L1 ambiguities. Hence, the 

latter do not benefit from the WL feedback as when using a ionosphere delay model, being erroneously computed in 15% 

more cases. The resulting degradation of the kinematic solution predominates over the benefits in the EKF baseline 

estimates that can be obtained removing the ionospheric delay estimation error.  
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