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The paper investigates different solutions for ionospheric delay handling in high accuracy long baseline relative positioning by
Carrier-Phase Differential GPS (CDGPS). Standard literature approaches are reviewed and the relevant limitations are discussed.
Hence, a completely ionosphere-free approach is proposed, in which the differential ionospheric delays are cancelled out by
combination of dual frequencyGPSmeasurements.The performance of this approach is quantified over real-world spaceborneGPS
data made available by the Gravity Recovery and Climate Experiment (GRACE) mission and compared to the standard solution.

1. Introduction

Carrier-Phase Differential GPS (CDGPS) is a proven tech-
nology in several fields of application. CDGPS has been
already employed for relative positioning of Low Earth Orbit
(LEO) satellites flying in formation [1–4], of aircraft with
respect to runways [5] and for cooperative self-separation
of general aviation aircraft [6]. The capability to achieve
high accuracy by CDGPS is based on the possibility to
exploit the integer nature of Double Difference (DD) carrier-
phase ambiguities [7]. However, as the separation among
the satellites increases, the correlation of ionospheric delays
among the receivers decreases [8]. As a result, DD GPS
observables are affected by significant errors that complicate
the integer resolution task. This paper investigates the effects
of different strategies for ionospheric delay compensation on
the accuracy in the relative positioning of GPS receivers in
LEO over long baselines. Its results can be extended, at least
in principle, to other formation flying applications [9], such as
those involving Very Light Jets [10] and/or Unmanned Aerial
Systems [11–13].

Different approaches exist in the literature for dealing
with ionospheric delays. In high accuracy, postprocessing
applications with dual frequency data [14, 15], the DD
ionospheric delays are estimated within a dynamic filter [16],
for example, the Extended Kalman Filter (EKF), and are

modelled by very simple stochastic models, typically using
random walk processes in the filter’s state vector. As an
alternative, delays are modelled by Lear’s model [1, 17] which
allows relating the 𝑛 slant ionospheric delays to the Vertical
Total Electron Content (VTEC) above the receivers. Even
though modelling the ionospheric delays helps to increase
their observability, and thus to aid in the ambiguity resolution
task, Lear’s model is known to be structurally capable of
reproducing actual ionospheric delays only to a limited extent
[8].

It is well known that linear combinations of GPS dual fre-
quency measurements can be used to delete the ionospheric
delays to first order. When those combinations are used as an
input to the EFK, it can be expected that the magnitude of
the ionospheric delays does not affect the achievable relative
positioning accuracy. However, the use of an ionosphere-free
approach is known to complicate significantly the integer
ambiguities resolution task if compared to approaches that
attempt to model the ionosphere [18, 19]. Hence, the choice
between model-based methods (e.g., based on Lear’s model)
and ionosphere-free approaches is in general not trivial [20],
depending on the relative distance between the receivers, on
relative dynamics, and on the status of ionospheric activity.
In this sense, the ionospheric activity plays a major role in
determining the set of GPS measurements and combinations
to process to improve the relative positioning accuracy.
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In this paper, a completely ionosphere-free approach
is pursued, in which the ionospheric delays are cancelled
out by combination of dual frequency GPS measurements.
Several alternative combinations are investigated based on
the ionosphere-free combination of pseudorange and carrier-
phase observables, but also on GRoup And PHase Iono-
spheric Correction (GRAPHIC) and Melbourne-Wubbena
combinations and thus the best combinations are selected.
Based on a relative positioning scheme previously developed
by the authors [17], the performance of each approach
is quantified over real-world spaceborne GPS data made
available by the Gravity Recovery and Climate Experiment
(GRACE) mission.

The paper is organized as follows. First the conventional
approach is presented in which the ionospheric delays are
estimated as part of the state vector through Lear’s model.
Then ionosphere-free observables are derived from the DD
observation models, and two different combinations are
selected for being integrated in an ionosphere-free formu-
lation of the EKF. The developed filter is finally tested on
GRACE data.

2. Ionospheric Delays Estimated by
Lear’s Model

The most common approach for handling the differential
ionospheric delays in high accuracy long baseline applica-
tions is to estimate the DD ionospheric delays within the EKF
modelling them using random walk processes in the state
vector [14, 15]. This scheme usually integrates an EKF with
an Integer Least Squares estimator based on the LAMDBA
method. This approach can be not sufficiently accurate in
real-time on-board implementations when accurate stochas-
tic and dynamic models cannot be used. In such conditions,
a reliable way to proceed is to model the ionospheric delays
through the VTEC above the receivers by Lear’s mapping
function [1, 8]. With specific reference to a formation of
two satellites, this approach leads to the following state and
measurement vectors:

x ∈ R
8+2𝑛

, x = (b ̇b VTEC NWL N1)
𝑇

;

y ∈ R
4𝑛
, y = (P1 P2 L1 L2)

𝑇

,

(1)

where b and ̇b are the baseline and the relative velocity
vectors expressed in the Earth-Centred Earth-Fixed (ECEF)
reference frame and N

1
stack together the cycle ambiguities

on the L1 frequency for the 𝑛 DD couples:

N1 ∈ R
𝑛

, N1 = ((𝑁1)
01
𝐴𝐵

⋅ ⋅ ⋅ (𝑁1)
0𝑛
𝐴𝐵
)

𝑇

, (2)

where the pivot satellite, that is, the reference GPS satellite
selected for calculating DD observables, is indicated with 0
for simplicity. NWL, instead, stacks together wide-lane cycle
ambiguities. In (1) P indicates DD pseudorange observables
and L represents DD carrier-phase ones.The subscripts 1 and
2 stand for L1 and L2GPS frequencies, respectively, whereas𝐴
and 𝐵 subscripts refer to the receivers onboard the satellites.
Finally, VTEC is the vector including the two vertical total

electron contents for the two receivers. According to Lear’s
model the zero difference ionospheric delay in meters for the
GPS satellite 𝑖 and the receiver 𝐴 can be written as [1, 8]

𝐼
𝑖

𝐴
=

40.3m3
/s2

𝑓
2

1

2.037

sin𝐸𝑖
𝐴
+ √sin2𝐸𝑖

𝐴
+ 0.076

VTEC
𝐴
, (3)

where 𝑓
1
is L1 carrier frequency in Hz, VTEC

𝐴
is the (scalar)

vertical total electron content for modeling the ionospheric
delay of the receiver𝐴 and is expressed in number of electrons
per square meter, and 𝐸𝑖

𝐴
is the elevation of the GPS satellite

𝑖 with respect to the receiver 𝐴.
The main advantage of Lear’s model is the capability

to predict zero difference ionospheric delays, relevant to
different tracked GPS satellites, as a function of a single
unknown parameter (i.e., VTECA), which is a desirable
property for navigation filters [1].

This reference model of (1)–(3) has shown satisfactory
observability features [17], since it is capable of delivering
good estimates of the Integer Ambiguities (IA) even in case
of only 3 DD observations. However, this VTEC-based EKF
has some inherent accuracy limitations, due to its inability
of rejecting deviations of the true ionosphere from Lear’s
model, which appear as additional error terms in the baseline
estimate [8]. In what follows, the possibility is discussed
of overcoming the limitations of the VTEC-based EKF
by deleting the ionospheric delays through measurement
combinations.

3. Ionosphere-Free Observables

Dual frequency DD carrier-phase and pseudorange observ-
ables can be combined in different ways to generate
ionosphere-free measurements. The complete DD observa-
tion model is thus presented before deriving the relevant
ionosphere-free observables.

3.1. DD Observation Model. The DDmeasurements have the
following expressions [21]:

(𝑃1)
𝑗𝑘

𝐴𝐵
= 𝜌
𝑗𝑘

𝐴𝐵
+ 𝐼
𝑗𝑘

𝐴𝐵
+ 𝜂
𝑗𝑘

1𝐴𝐵,

(𝑃2)
𝑗𝑘

𝐴𝐵
= 𝜌
𝑗𝑘

𝐴𝐵
+ 𝛾
−2
𝐼
𝑗𝑘

𝐴𝐵
+ 𝜂
𝑗𝑘

2𝐴𝐵,

(𝐿1)
𝑗𝑘

𝐴𝐵
= 𝜌
𝑗𝑘

𝐴𝐵
− 𝐼
𝑗𝑘

𝐴𝐵
+𝜆1 (𝑁1)

𝑗𝑘

𝐴𝐵
+𝛽
𝑗𝑘

1𝐴𝐵,

(𝐿2)
𝑗𝑘

𝐴𝐵
= 𝜌
𝑗𝑘

𝐴𝐵
− 𝛾
−2
𝐼
𝑗𝑘

𝐴𝐵
+𝜆2 (𝑁2)

𝑗𝑘

𝐴𝐵
+𝛽
𝑗𝑘

2𝐴𝐵,

(4)

where

(i) 𝛾 = 𝑓
2
/𝑓
1
is ratio between the L2 and L1 frequencies,

and the 𝑗 and 𝑘 superscripts refer to the GPS satellites
radiating the navigation signal;

(ii) 𝜆1, 𝜆2 are the wavelengths of L1 and L2 signals,
respectively;

(iii) 𝜌𝑗𝑘
𝐴𝐵

= 𝜌
𝑘

𝐵
− 𝜌
𝑘

𝐴
− 𝜌
𝑗

𝐵
+ 𝜌
𝑗

𝐴
is the DD geometric term

between the two receivers;
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(iv) 𝐼𝑗𝑘
𝐴𝐵
= 𝐼
𝑘

𝐵
− 𝐼
𝑘

𝐴
− 𝐼
𝑗

𝐵
+ 𝐼
𝑗

𝐴
is the DD ionospheric delay

on the L1 frequency, which is denoted simply by ion-
ospheric delay in the following;

(v) (𝑁1)
𝑗𝑘

𝐴𝐵
= (𝑁1)

𝑘

𝐵
− (𝑁1)

𝑘

𝐴
− (𝑁1)

𝑗

𝐵
+ (𝑁1)

𝑗

𝐴
is the

integer ambiguity on the L1 frequency (on L2 which
is analogous);

(vi) 𝜂1
𝑗𝑘

𝐴𝐵
= 𝜂1
𝑘

𝐵
− 𝜂1
𝑘

𝐴
− 𝜂1
𝑗

𝐵
+ 𝜂1
𝑗

𝐴
is the 𝑃

1
noise term on

the L1 frequency (on L2 which is analogous);
(vii) 𝛽1

𝑗𝑘

𝐴𝐵
= 𝛽1
𝑘

𝐵
− 𝛽1
𝑘

𝐴
− 𝛽1
𝑗

𝐵
+ 𝛽1
𝑗

𝐴
is the 𝐿

1
noise term on

the L1 frequency (on L2 which is analogous).
Each of the four observables in (4) is assumed to be indepen-
dent from the other ones. However, the 𝑛 DDmeasurements
of the same kind at a certain time epoch are mutually
correlated due to the presence of the pivot satellite in all
the measurements. More precisely, denoting generically by𝑋
the observation type, that is, 𝑋 = 𝑃

1
, . . . , 𝐿

2
, and by 𝜎

𝑋
its

standard deviation, we have

cov
[

[

[

[

(𝑋)
01
𝐴𝐵

⋅ ⋅ ⋅

(𝑋)
0𝑛
𝐴𝐵

]

]

]

]

= 𝜎
2
𝑋
𝐷, 𝐷 :=(

4 2 ⋅ ⋅ ⋅ 2
2 4 2
.
.
. d

.

.

.

2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4

). (5)

3.2. Ionospheric Free Combination. The most common com-
bination for eliminating the ionospheric delay, referred to
as Ionosphere-Free (IF) [21], is concerned with combining
observations of the same type on the two carrier frequencies,
exploiting the frequency dependence of the first-order iono-
spheric delay effect. More precisely, the IF combinations are
obtained as

𝑋IF =
𝑓
2
2𝑋2 − 𝑓

2
1𝑋1

𝑓
2
2 − 𝑓

2
1

=

𝛾
2
𝑋2 − 𝑋1
𝛾
2
− 1

. (6)

Thus, two IF observables per each DD couple 𝑗𝑘 out of the
four measurements in (4) are

(𝑃IF)
𝑗𝑘

𝐴𝐵
=

1
1 − 𝛾2

[(𝑃1)
𝑗𝑘

𝐴𝐵
− 𝛾

2
(𝑃2)
𝑗𝑘

𝐴𝐵
] , (7)

(𝐿 IF)
𝑗𝑘

𝐴𝐵
=

1
1 − 𝛾2

[(𝐿1)
𝑗𝑘

𝐴𝐵
− 𝛾

2
(𝐿2)
𝑗𝑘

𝐴𝐵
] . (8)

The IF observationmodel can be obtained combining (4), (6),
and (7) which yields

(𝑃IF)
𝑗𝑘

𝐴𝐵
= 𝜌
𝑗𝑘

𝐴𝐵
+ (𝜂IF)

𝑗𝑘

𝐴𝐵
,

(𝐿 IF)
𝑗𝑘

𝐴𝐵
= 𝜌
𝑗𝑘

𝐴𝐵
+

1
1 − 𝛾2

[𝜆1 (𝑁1)
𝑗𝑘

𝐴𝐵
− 𝛾

2
𝜆2 (𝑁2)

𝑗𝑘

𝐴𝐵
]

+ (𝛽IF)
𝑗𝑘

𝐴𝐵
.

(9)

Since the observation types are assumed to be independent,
assuming white Gaussian measurements noises, the IF com-
binations are affected by Gaussian white noise with variance

Var [(𝑋IF)
𝑗𝑘

𝐴𝐵
] = 4

𝜎
2
𝑋1 + 𝛾

4
𝜎
2
𝑋2

(1 − 𝛾2)2
, 𝑋 = 𝑃, 𝐿. (10)

Hence, the noise is increased compared to the original
uncombined observations.

3.3. GRAPHIC Combinations. GRAPHIC combinations
exploit the asymmetry of the ionospheric effect on group
and phase propagation [22]. In practice, they combine
pseudorange and carrier-phase measurements on each
frequency, as follows:

(𝐺1)
𝑗𝑘

𝐴𝐵
= 0.5 [(𝑃1)

𝑗𝑘

𝐴𝐵
+ (𝐿1)

𝑗𝑘

𝐴𝐵
] ,

(𝐺2)
𝑗𝑘

𝐴𝐵
= 0.5 [(𝑃2)

𝑗𝑘

𝐴𝐵
+ (𝐿2)

𝑗𝑘

𝐴𝐵
] .

(11)

From the above equations, the GRAPHIC observationmodel
and variance read

(𝐺1)
𝑗𝑘

𝐴𝐵
= 𝜌
𝑗𝑘

𝐴𝐵
+

𝜆1
2
(𝑁1)
𝑗𝑘

𝐴𝐵
+ (𝜙1)

𝑗𝑘

𝐴𝐵
,

(𝐺2)
𝑗𝑘

𝐴𝐵
= 𝜌
𝑗𝑘

𝐴𝐵
+

𝜆2
2
(𝑁2)
𝑗𝑘

𝐴𝐵
+ (𝜙2)

𝑗𝑘

𝐴𝐵
,

Var [(𝐺
𝑖
)
𝑗𝑘

𝐴𝐵
] = 𝜎

2
𝑃𝑖
+𝜎

2
𝐿𝑖
, 𝑖 = 1, 2,

(12)

where 𝜙1, 𝜙2 indicate the noise terms of 𝐺
1
and 𝐺

2
combina-

tions, respectively.

3.4. Melbourne-Wubbena Combinations. Melbourne-Wub-
bena (MW) combinations combine all four observable types
for cancelling out the ionospheric delay [23, 24]. They build
upon the definition of the wide and narrow lane (NL)
wavelengths:

𝜆WL =
𝑐

𝑓1 − 𝑓2
;

𝜆NL =
𝑐

𝑓1 + 𝑓2
,

(13)

where 𝑐 is the speed of light in vacuum. The MW combina-
tions are obtained as

(MW󸀠)
𝑗𝑘

𝐴𝐵

= 𝜆WL [
(𝐿1)
𝑗𝑘

𝐴𝐵

𝜆1
−

(𝐿2)
𝑗𝑘

𝐴𝐵

𝜆2
]

−𝜆NL [
(𝑃1)
𝑗𝑘

𝐴𝐵

𝜆1
+

(𝑃2)
𝑗𝑘

𝐴𝐵

𝜆2
]

(14)

and have the following observation model and variance:

(MW)𝑗𝑘
𝐴𝐵
= 𝜆WL [(𝑁WL)

𝑗𝑘

𝐴𝐵
] +𝜔
𝑗𝑘

𝐴𝐵
;

(𝑁WL)
𝑗𝑘

𝐴𝐵
= (𝑁1)

𝑗𝑘

𝐴𝐵
− (𝑁2)

𝑗𝑘

𝐴𝐵
,

Var [(MW)𝑗𝑘
𝐴𝐵
] = 4𝜆2NL(

𝜎
2
𝑃1

𝜆
2
1
+

𝜎
2
𝑃2

𝜆
2
2
)

+ 4𝜆2WL(
𝜎
2
𝐿1

𝜆
2
1
+

𝜎
2
𝐿2

𝜆
2
2
) ,

(15)

where 𝜔 represents the noise term of the combination.
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Table 1: Expected and estimated standard deviations of the various combinations for 𝜌𝑗𝑘 estimation (NA: not available).

𝑃
1

𝑃
2

𝐿
1
, 𝐿
2

𝐿 IF 𝐺
1

𝐺
2

𝑃IF MW

Formula 𝜎
2
𝑃1

𝜎
2
𝑃2

𝜎
2
𝐿1
= 𝜎

2
𝐿2

2√
𝜎
2
𝐿1
+ 𝛾

4
𝜎
2
𝐿2

(1 − 𝛾2)2
√𝜎

2
𝑃1
+ 𝜎

2
𝐿1

√𝜎
2
𝑃2
+ 𝜎

2
𝐿2

2√
𝜎
2
𝑃1
+ 𝛾

4
𝜎
2
𝑃2

(1 − 𝛾2)2
NA

Unit m M m m m m m m
Example 1 0.150 0.200 0.010 0.060 0.150 0.200 0.983 NA
Example 2 0.100 0.150 0.005 0.030 0.100 0.150 0.689 NA
Example 3 0.100 0.150 0.001 0.006 0.100 0.150 0.689 NA
GRACE data 0.005 0.082 0.149 0.708 NA
(Jan. 09)

Table 2: Expected and estimated standard deviations of the various combinations for𝑁
1

𝑗𝑘 estimation (NA: not available).

𝑃1 𝑃2 𝐿1, 𝐿2 𝐿 IF 𝐺1 𝐺2, 𝑃IF MW

Formula 𝜎
2
𝑃1

𝜎
2
𝑃2

𝜎
2
𝐿1
= 𝜎

2
𝐿2

2√
𝜎
2
𝐿1
+ 𝛾

4
𝜎
2
𝐿2

𝜆1 (1 − 𝛾2)
√

2
𝜆1
(𝜎

2
𝑃1
+ 𝜎

2
𝐿1
) NA 2√

𝜆
2
NL

𝜆WL
(

𝜎
2
𝑃1

𝜆
2
1
+

𝜎
2
𝑃2

𝜆
2
2
) + 𝜆WL (

𝜎
2
𝐿1

𝜆
2
1
+

𝜎
2
𝐿2

𝜆
2
2
)

Unit m m m Cycles Cycles Cycles Cycles
Example 1 0.150 0.200 0.010 0.123 1.580 NA 0.312
Example 2 0.100 0.150 0.005 0.061 1.052 NA 0.211
Example 3 0.100 0.150 0.001 0.012 1.051 NA 0.201
GRACE data 0.010 0.862 NA 0.194
(Jan. 09)

4. Ionosphere-Free Relative Positioning

This section is concerned with establishing which of the
measurement combinations presented in Section 3 is suitable
for computing the relative position of the two receivers in
long baseline applications. The measurement combinations
available with no ionospheric effects are the 𝑛 𝑃IF combina-
tions, the 𝑛 𝐿 IF combinations, the 𝑛GRAPHIC combinations
on L1 and L2, and the 𝑛 MW combinations, for a total
of 5n measurements. However, the 5𝑛 measurements are
not linearly independent. In particular, each group of 5
observables per each of the 𝑛 DD couples can be seen as a
linear transformation of the 4 uncombined measurements
of (4). More precisely, the cancellation of the ionosphere
from (4) can be seen as a linear projection of the 4-
dimensional measurement vector [𝑃

1
, 𝑃
2
, 𝐿
1
, 𝐿
2
]
𝑇 onto a 3-

dimensional hyperplane. This implies that no more than
three linear combinations of the four dimensional vector
exist being linearly independent, and thus suitable for use as
measurement vector in an EKF. In addition, whatever set of
three linearly independent vectors lying on the hyperplane
can be used as a basis for describing all the vectors belonging
to the hyperplane. Even though any of such bases would yield
theoretically equivalent positioning solutions, significant dif-
ferences exist in practical applications due to unmodeled
systematic errors. In order to find such “best” basis, its

performance in accurately estimating both the geometric
term and the cycle ambiguity is analyzed. A natural indicator
to evaluate the accuracy achieved by a specific measurement
combination is the standard deviation (STD) of the noise
affecting the measurements.

Hence, a specific analysis has been performed. Starting
from different candidate noise levels for the uncombined
measurements, that is, 𝑃

1
, 𝑃
2
, 𝐿
1
, and 𝐿

2
(see the first

three columns in Table 1), reflecting typical performance
of spaceborne GPS receivers, the expected STD for the
estimation of the geometric term 𝜌

𝑗𝑘 is derived as listed
in Table 1. The rationale of this analysis is that different
combinations of GPS measurements may modify, that is
either amply or reduce, the uncertainty of the geometric
term. Combinations able to reduce this uncertainty should be
preferred for implementation in an ionosphere-free EKF.The
same analysis is then repeated for the integer ambiguity on
L1. Again, the smaller the uncertainty on this ambiguity, the
larger the probability to correctly fix it. The results are shown
inTable 2. In this case, a scale factor is introduced to represent
the STD of combinedmeasurements as a fraction of L1 cycles.
In addition to this theoretical analysis, the dispersion of
actual GRACE data is computed and the relevant STD is
calculated (see the last row in Tables 1 and 2) for gaining
further insight into the true-world accuracy of the various
combinations.
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According to the results presented in Tables 1 and 2, the
set of measurements including 𝐿 IF, 𝐺1, and MW combina-
tions is the one allowing a higher potential accuracy on both
the DD geometric term and the cycle ambiguities. This set of
measurements is called set “3𝑛” in what follows. A potential
limitation of set 3𝑛 is that cycle ambiguities are present in
all the three observation models. Hence, when the number
of fixed ambiguities is smaller than three, the observation
model provides no useful information to the EKF, which is
thus forced to rely only on its propagation model. In this
particular situation, the EKF is expected to perform poorly.
To cope with this problem an additional set is considered,
called set “4𝑛” and made of 𝐿 IF, 𝐺1, and MW combinations,
plus the uncombined 𝑃

1
measurement. The addition of 𝑃

1

observations allows the filter to rely on relative positioning
information even when less than three cycle ambiguities are
fixed.

Because the various combinations have different observa-
tion models selecting different sets of measurements affects
the observability of the EKF state vector differently. The
observability of the system at hand is extremely involved
to be analyzed. Indeed, the dynamical system is nonlinear
and evolves on a time-varying trajectory. Its linearization is
thus time-varying and depends on the state estimate. The
observation model is nonlinear, due to the DD geometry
terms. Its linearization depends on the state trajectory, and
thus it is time-varying as well. Both the dynamical and
the observation models depend on an exogenous vector
parameter (e.g., the absolute position of one of the receivers)
[17]. Finally, both the EKF state vector and the measurements
depend on the number of DD couples 𝑛, which is time-
varying as well. In such a condition, instead of developing
a complicated observability analysis a different approach is
pursued, which is based on numerically evaluating the EKF
performances using both set 3𝑛 and set 4𝑛 as shown in the
next section.

4.1. No-Iono EKF Dynamic Model. The no-iono EKF state
vector is defined as

𝑥 ∈ R
6+2𝑛

, 𝑥 = (b ̇b NWL N1)
𝑇

. (16)

Concerning the process model, the baseline dynamics is
described by the nonlinear relative Keplerian model with J2
effects included. This model is equal to the one used in the

VTEC-based EKF [17] and is denoted at the time epoch 𝑡
𝑘
as

follows:

̈b = 𝑓 (b, ̇b, r
𝐴
) ,

(

b
̇b
)

𝑘+1

= Φ
𝑏,𝑘
(

b
̇b
)

𝑘

+w
𝑏
;

𝐸 (w
𝑏
w𝑇
𝑏
) = 𝑄

𝑏
,

(17)

where 𝑓 is the nonlinear baseline propagation function, r
𝐴

denotes the receiver 𝐴 position vector in ECEF, Φ is the
time-discrete baseline propagation matrix, w

𝑏
is the baseline

process noise vector, and E indicates themathematical expec-
tation.

Cycle ambiguities are instead assumed to be constant.
However, a small process noise w

𝑁
might be injected, letting

them be modeled as a random constant plus random walk.
The model is equal to the one used in the VTEC-based
EKF [17] and is denoted by (1

𝑛
is the 𝑛-by-𝑛 identity

matrix)

(

ṄWL

̇N1
) = 0,

(

NWL

N1
)

𝑘+1
= 1
𝑛
(

NWL

N1
)

𝑘

+w
𝑁
;

𝐸 (w
𝑁
w𝑇
𝑁
) = 𝑄

𝑁
= 𝜎

2
𝑁
1
𝑛
.

(18)

4.2. No-Iono EKF Observation Model. The two different
observation models share some common structure, which
is discussed first. Then, details on each of the two models
will be given. The no-iono EKF measurement vector 𝑦 is
made of a series of measurement combinations, depend-
ing on the chosen set. Each measurement combination
stacks together the combinations for each of the 𝑛 DD
couples:

X ∈ R
𝑛

, X = ((𝑋)01
𝐴𝐵

⋅ ⋅ ⋅ (𝑋)
0𝑛
𝐴𝐵
)

𝑇

. (19)

The covariance matrix of 𝑦 has a nonsparse structure, due
to the presence of the various uncombined measurements
in more combinations, and because of the full covariance
matrix of each of the uncombined measurements X. In order
to have the desired covariance matrix, cov(𝑦), it is possible
to introduce the vector 𝑧 that stacks the uncombined DD
observations 𝑃

1
, . . . , 𝐿

2
:

𝑧 = ( (𝑃1)
01
𝐴𝐵

⋅ ⋅ ⋅ (𝑃1)
0𝑛
𝐴𝐵

(𝑃2)
01
𝐴𝐵

⋅ ⋅ ⋅ (𝑃2)
0𝑛
𝐴𝐵

(𝐿1)
01
𝐴𝐵

⋅ ⋅ ⋅ (𝐿1)
0𝑛
𝐴𝐵

(𝐿2)
01
𝐴𝐵

⋅ ⋅ ⋅ (𝐿2)
0𝑛
𝐴𝐵
)

𝑇

,

cov (𝑧) =(

𝜎
2
𝑃1
𝐷 0

𝜎
2
𝑃2
𝐷

𝜎
2
𝐿
𝐷

0 𝜎
2
𝐿
𝐷

).

(20)
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The chosen combined measurements set can be expressed as
a linear function of the uncombined measurement vector 𝑧,
by means of a matrix 𝑇 depending on the chosen set. The
matrix cov(𝑦) can be obtained by cov(𝑧) applying the linear
transformation:

𝑦 = 𝑇𝑧;

𝑅 = cov (𝑦) = 𝑇 cov (𝑧) 𝑇𝑇.
(21)

The observation model relating the EKF state to the observ-
ables is nonlinear due to the geometric term. The geometric
term is independent from the chosen measurement set and
thus is discussed herein. The 𝑛 DD geometric terms are
related to the baseline by the following equations (𝑅𝑖 denotes
the 𝑖th GPS satellite position vector in ECEF):

𝜌
𝑗𝑘

𝐴𝐵
=

󵄩
󵄩
󵄩
󵄩
󵄩
R𝑘 − (r

𝐴
+ b)󵄩󵄩󵄩󵄩

󵄩
−

󵄩
󵄩
󵄩
󵄩
󵄩
R𝑘 − r

𝐴

󵄩
󵄩
󵄩
󵄩
󵄩
−

󵄩
󵄩
󵄩
󵄩
󵄩
R𝑗 − (r

𝐴
+ b)󵄩󵄩󵄩󵄩

󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
R𝑗 − r

𝐴

󵄩
󵄩
󵄩
󵄩
󵄩
.

(22)

The nonlinear observation model and the linear delta obser-
vationmodel, needed for the computation of theKalman gain
in the EKF, are obtained by linearization of the propagated
state vector, and it can be expressed generically as

𝑦 ∈ R
3𝑛
, 𝑦 = ℎ (𝑥) ,

Δ𝑦 ∈ R
3𝑛
, Δ𝑦 = 𝐻Δ𝑥.

(23)

Thus, at each time epoch, from the observation equations,
the measurement vector 𝑦 is computed combining uncom-
bined measurements. The choice of the measurement set to
consider thus changes only the following: (1) 𝑇 matrix for
obtaining the EKF combinedmeasurement vector 𝑦 from the
uncombined one 𝑧, (2) ℎ(𝑥) nonlinear observation function,
and (3) 𝐻matrix of the linearized observation model. These
items are discussed in the following subsections for each
measurement set.

4.2.1. Set 3𝑛. The 𝑇 matrix, the ℎ(𝑥) function, and the 𝐻
matrix take the following form:

𝑇

=
(

(

0
𝑛

0
𝑛

1
1 − 𝛾2

1
𝑛
−

𝛾
2
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1
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1
2
1
𝑛

0
𝑛

1
2
1
𝑛

0
𝑛

−

𝜆NL
𝜆1

1
𝑛
−

𝜆NL
𝜆2

1
𝑛

𝜆WL
𝜆1

1
𝑛

−

𝜆WL
𝜆2

1
𝑛

)

)

,

ℎ (𝑥)

= (

𝜌
𝑗

𝐴𝐵
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𝑗
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1
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2
1
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𝜆WL1𝑛 0
𝑛

)(

NWL

N1
) ,

𝐻 =(

∇b𝜌
𝑗

𝐴𝐵
03

𝜆1𝛾

1 − 𝛾2
1
𝑛

𝜆1
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1
𝑛

∇b𝜌
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𝐴𝐵
03 0
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2
1
𝑛

03 03 𝜆WL1𝑛 0
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),

(24)

where 𝜌𝑗
𝐴𝐵

vector stacks together 𝑛DD geometric terms,∇b is
the gradient operator with respect to the baseline vector, and
0
𝑛
is the 𝑛-by-𝑛 null matrix.

4.2.2. Set 4𝑛. The 𝑇 matrix, the ℎ(𝑥) function, and the 𝐻
matrix take the following form:

𝑇 = (

1
𝑛

0
𝑛

0
𝑛

0
𝑛

𝑇3𝑛
) ,

ℎ (𝑥) = (
𝜌
𝑗

𝐴𝐵
(b)

ℎ3𝑛 (𝑥)
) ,

𝐻 = (
∇b𝜌
𝑗

𝐴𝐵
03 0
𝑛

0
𝑛

𝐻3𝑛
) ,

(25)

where the subscript “3𝑛” is used to indicate matrix and
functions relevant to set 3𝑛. It is worth noting that, since
the ionospheric delay is cancelled and not included in the
state vector, the implemented observation model for 𝑃

1

measurement is

(𝑃1)
𝑗𝑘

𝐴𝐵
= 𝜌
𝑗𝑘

𝐴𝐵
+ 𝜂
𝑗𝑘

1𝐴𝐵. (26)

Comparing (4) to (26), it is evident that set 4𝑛 implicitly
assumes the DD ionospheric delay modelled as an additional
Gaussian white noise affecting the 𝑃

1
measurements. In other

words, considering that the DD ionospheric delay is only
a small fraction of the total ionospheric delays, the DD
𝑃
1
observable noise is modelled as if the ionospheric delay

was not time correlated but included within the white noise
error. This approach resembles that one used in [7, 14] where
ionospheric delays are modelled as random walk processes
characterized by large process noises and correlation times in
the order of the filter time step.

5. Results

The reference EKF and the no-iono solutions have been
run on GRACE data. Comparisons among the solutions
are performed looking at the baseline magnitude estimation
error and at the capability to obtain correct estimates of the
integer ambiguities. Both of them are estimated thanks to the
high accuracy reference solutions, which can be computed
processing GRACE data [8]. As expected, application to mild
and moderate ionospheric conditions, not shown herein for



International Journal of Aerospace Engineering 7

0 1 2 3 4 5 6 7 8

−2

0

2

Reference solution—Oct. 13, 2011

0 1 2 3 4 5 6 7 8
0

5

10

Time (s)

Time (s)

Correct
WrongUnknown
Fixed

×10
4

×10
4

N
um

be
r o

f I
A

‖b
‖,

m

Figure 1: Baseline magnitude estimation error and L1 ambiguities
estimation performance for the reference solution.

brevity, suggest that the filter with Lear’s model is capable to
achieve a baseline estimation error which is the half of the
no-iono approach (both set 3𝑛 and set 4𝑛). This behaviour
changes under strong ionospheric activity. In order to show
this, DOY286 (October 13th) 2011 has been selected for the
analysis, in which the two GRACE spacecrafts are separated
of more than 200 km, and ionospheric activity is extremely
intense. Figures 1–3 report the baselinemagnitude estimation
error and the IA estimation performance for the reference
solution and the no-iono solutions, respectively. Specifically,
only L1 estimation performance is shown because wide lane
fail rates are significantly lower than those on L1.

Figure 1 shows that, under strong ionospheric activity,
Lear’s model is not able to support the integer estimation,
so a significant number of ambiguities is wrong and baseline
magnitude estimation errors larger than 1moccur. IA estima-
tion performance increases notably when set 3𝑛 is considered
(see Figure 2), and the baseline estimation error reduces to
decimetre scale in this case. Finally, with reference to set
4𝑛, it is evident that the addition of the 𝑃

1
measurements

is not a successful strategy when the ionospheric activity
is intense. Indeed, DD ionospheric delays dominate over
𝑃
1
measurement noise and so they cannot be modelled as

additional Gaussian white noise.

6. Concluding Remarks

This paper has compared various strategies for compensat-
ing ionospheric delays in long baseline relative position-
ing applications for LEO spacecraft using dual-frequency
CDGPS techniques. Based on a relative positioning technique
previously developed by the authors, problem settings that
do not require ionospheric delays estimation have been
investigated. The ionosphere-free alternatives have been also
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Figure 2: Baseline magnitude estimation error and L1 ambiguities
estimation performance for set 3𝑛.
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Figure 3: Baseline magnitude estimation error and L1 ambiguities
estimation performance for set 4𝑛.

compared with a reference solution making use of a stan-
dard ionospheric delay model for spaceborne applications,
originally developed by Lear. Results suggest that, among the
possible alternatives and under strong ionospheric activity,
best performance is achieved using the observation model
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made of ionosphere-free combinations of carrier-phase mea-
surements, GRAPHIC combinations on the L1 frequency,
and Melbourne-Wubbena combinations. Future work will
deal with the extension of these results to a more complete
data set, including different levels of the ionospheric activity.
The ultimate goal is the introduction of quantitative tools to
guide the selection between model-based and ionosphere-
free approaches depending on the ionospheric activity and
the available ionospheric models.
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