45 research outputs found

    Foreword

    Get PDF

    Trophic interactions between picophytoplankton and micro- and nanozooplankton in the western Arabian Sea during the NE monsoon 1993

    Full text link
    The grazing pressure of micro- and nanozooplankton on phytoplankton was estimated in serial dilution experiments in the northwestern Arabian Sea and its adjacent areas (the Somali Current, the Somali Basin, the Gulf of Aden and the southern Red Sea) during the NE monsoon 1992-1993. Microzooplankton grazing rates (g) on total phytoplankton (analyzed as chi a) were generally exceeded by phytoplankton growth rates (g = 0.2 to 1.19 d(-1), mean 0.48 d(-1); mu = 0.52 to 1.12 d(-1), mean 0.72 d(-1)), resulting in an average daily consumption of 38 % of the phytoplankton standing stock and 67 % of the primary production. Microzooplankton grazing on 4 picophytoplankton groups (Prochlorococcus spp., Synechococcus spp., and 2 picoeukaryotes) analyzed by flow cytometry showed growth (mu = 0.27 to 0.92 d(-1), mean 0.68 d(-1)) and grazing mortality rates (g = 0.26 to 0.73 d(-1), mean 0.67 d(-1)) well in balance, with an average of 49 % of the standing stock and 102% of the primary production grazed per day. Picophytoplankton growth and grazing mortality rates increased dramatically when grazers >10 mu m were removed. These results suggest a control of the small grazers by larger ones (trophic cascade) and a close coupling between picoautotrophic prey and small grazers. The trophic cascade within the microbial food web of the nanoplankton encompasses 3 trophic levels: picoplankton - small HNF - larger flagellates and ciliates

    Transport signature of pseudo-Jahn-Teller dynamics in a single-molecule transistor

    Full text link
    We calculate the electronic transport through a molecular dimer, in which an excess electron is delocalized over equivalent monomers, which can be locally distorted. In this system the Born-Oppenheimer approximation breaks down resulting in quantum entanglement of the mechanical and electronic motion. We show that pseudo Jahn-Teller (pJT) dynamics of the molecule gives rise to conductance peaks that indicate this violation. Their magnitude, sign and position sharply depend on the electro-mechanical properties of the molecule, which can be varied in recently developed three-terminal junctions with mechanical control. The predicted effect depends crucially on the degree of intramolecular delocalization of the excess electron, a parameter which is also of fundamental importance in physical chemistry.Comment: 6 pages, 3 figure

    Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments

    Get PDF
    Laboratory experiments were carried out to investigate the effect of protozoan, copepod and combined grazing on Phaeocystis biomass. Phaeocystis cf. globosa single cells were offered to 3 different protozoan species, to the calanoid copepod Temora longicornis, as well as to mixtures of both grazer types. The heterotrophic dinoflagellate Oxyrrhis marina and the oligotrich ciliate Strombidinopsis acuminatum ingested Phaeocystis at much higher rates than did the copepod. Nevertheless, protozoan growth and ingestion rates were submaximal, indicating Phaeocystis to be suboptimal food. The oligotrich ciliate Strombidium elegans did not feed on Phaeocystis. In grazing experiments with mixtures of both predator types, the decline of Phaeocystis single cells could be explained by protozoan grazing alone, implying no grazing by the copepods on Phaeocystis. Instead, copepods ingested the protozoans at high rates. Predation on 0. marina and S. acuminatum by T. longicornis resulted in a reduction of the total grazing pressure on Phaeocystis of 21 and 67 % respectively. We conclude that mesozooplankton predation on herbivorous ciliates and heterotrophic dinoflagellates, which consumed Phaeocystis cells, can considerably reduce the overall grazing pressure and may enhance Phaeocystis bloomng

    Vibrational detection and control of spin in mixed-valence molecular transistors

    Get PDF
    We investigate electron transport through a mixed-valence molecular complex in which an excess electron can tunnel between hetero-valent transition metal ions, each having a fixed localized spin. We show that in this class of molecules the interplay of the spins and the vibrational breathing modes of the ionic ligand-shells allows the total molecular spin to be detected as well as controlled by nonequilibrium transport. Due to a spin-dependent pseudo Jahn-Teller effect electronic transitions with different spin values can be distinguished by their vibronic conductance side peaks, without using an external magnetic field. Conversely, we show that the spin state of the entire molecule can also be controlled via the nonequilibrium quantized molecular vibrations due to a vibration-induced spin-blockade.Comment: 6 pages, 3 figure

    Dzyaloshinskii-Moriya interaction in transport through single molecule transistors

    Full text link
    The Dzyaloshinskii-Moriya interaction is shown to result in a canting of spins in a single molecule transistor. We predict non-linear transport signatures of this effect induced by spin-orbit coupling for the generic case of a molecular dimer. The conductance is calculated using a master equation and is found to exhibit a non-trivial dependence on the magnitude and direction of an external magnetic field. We show how three-terminal transport measurements allow for a determination of the coupling-vector characterizing the Dzyaloshinskii-Moriya interaction. In particular, we show how its orientation, defining the intramolecular spin chirality, can be probed with ferromagnetic electrodes

    Charge transport through single molecules, quantum dots, and quantum wires

    Full text link
    We review recent progresses in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots, and quantum wires. A variety of physical phenomena is addressed, relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical many-body methods to treat correlation effects, quantum fluctuations, nonequilibrium physics, and the time evolution into the stationary state of complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog

    Isolation of a euryhaline microalgal strain, Tetraselmis sp CTP4, as a robust feedstock for biodiesel production

    Get PDF
    Bioprospecting for novel microalgal strains is key to improving the feasibility of microalgae-derived biodiesel production. Tetraselmis sp. CTP4 (Chlorophyta, Chlorodendrophyceae) was isolated using fluorescence activated cell sorting (FACS) in order to screen novel lipid-rich microalgae. CTP4 is a robust, euryhaline strain able to grow in seawater growth medium as well as in non-sterile urban wastewater. Because of its large cell size (9-22 mu m), CTP4 settles down after a six-hour sedimentation step. This leads to a medium removal efficiency of 80%, allowing a significant decrease of biomass dewatering costs. Using a two-stage system, a 3-fold increase in lipid content (up to 33% of DW) and a 2-fold enhancement in lipid productivity (up to 52.1 mg L-1 d(-1)) were observed upon exposure to nutrient depletion for 7 days. The biodiesel synthesized from the lipids of CTP4 contained high levels of oleic acid (25.67% of total fatty acids content) and minor amounts of polyunsaturated fatty acids with >= 4 double bonds (< 1%). As a result, this biofuel complies with most of the European (EN14214) and American (ASTM D6751) specifications, which commonly used microalgal feedstocks are usually unable to meet. In conclusion, Tetraselmis sp. CTP4 displays promising features as feedstock with lower downstream processing costs for biomass dewatering and biodiesel refining

    Climate Change in the Baltic Sea Region: A Summary

    Get PDF
    Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in climate of the Baltic Sea region is summarized and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focusses on the atmosphere, land, cryosphere, ocean, sediments and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in paleo-, historical and future regional climate research, we find that the main conclusions from earlier assessments remain still valid. However, new long-term, homogenous observational records, e.g. for Scandinavian glacier inventories, sea-level driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution and new scenario simulations with improved models, e.g. for glaciers, lake ice and marine food web, have become available. In many cases, uncertainties can now be better estimated than before, because more models can be included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth System have been studied and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication and climate change. New data sets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal time scales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first paleoclimate simulations regionalized for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA) and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics is dominated by tides, the Baltic Sea is characterized by brackish water, a perennial vertical stratification in the southern sub-basins and a seasonal sea ice cover in the northern sub-basins</p

    Climate change in the Baltic Sea region: a summary

    Get PDF
    Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins
    corecore