819 research outputs found
Self-excited Oscillations of Charge-Spin Accumulation Due to Single-electron Tunneling
We theoretically study electronic transport through a layer of quantum dots
connecting two metallic leads. By the inclusion of an inductor in series with
the junction, we show that steady electronic transport in such a system may be
unstable with respect to temporal oscillations caused by an interplay between
the Coulomb blockade of tunneling and spin accumulation in the dots. When this
instability occurs, a new stable regime is reached, where the average spin and
charge in the dots oscillate periodically in time. The frequency of these
oscillations is typically of the order of 1GHz for realistic values of the
junction parameters
Quantum Frequency Translation of Single-Photon States in Photonic Crystal Fiber
We experimentally demonstrate frequency translation of a nonclassical optical
field via the Bragg scattering four-wave mixing process in a photonic crystal
fiber (PCF). The high nonlinearity and the ability to control dispersion in PCF
enable efficient translation between photon channels within the visible
to-near-infrared spectral range, useful in quantum networks. Heralded single
photons at 683 nm were translated to 659 nm with an efficiency of percent. Second-order correlation measurements on the 683-nm and 659-nm
fields yielded and respectively, showing the nonclassical nature of both fields.Comment: 5 pages, 3 figure
Tapentadol Prolonged Release for Long-Term Treatment of Pain in Children
Purpose: Investigation of the efficacy and safety of tapentadol prolonged release (PR) compared with morphine PR for long-term treatment of pain in children. /
Patients and Methods: Children aged 6 to < 18 years requiring long-term treatment with opioids were studied in a 12-month, 2-part, multi-center trial: Part 1, 14-day open-label, randomized, active-controlled, parallel group non-inferiority trial comparing twice daily tapentadol PR with morphine PR; Part 2, open-label treatment with tapentadol PR for up to 12 months or no treatment “safety observation period”. Pain intensity was rated with visual analogue scale or Faces Pain Scale-Revised, and non-inferiority was assessed by comparison of “treatment responders” (those completing the 14-day treatment period and showing pre-defined changes in pain rating) in each group. /
Results: Twenty-three of 48 centers enrolled 73 patients. In Part 1, 45 and 24 patients received tapentadol or morphine, respectively, of which 40 and 22 completed 14-day treatment. In Part 2, thirty-six and 58 patients entered the tapentadol PR or observation periods, respectively, with 20/36 completing at least 12 weeks of treatment; 10 of the 36 had received morphine in Part 1. Forty-four of the 58 patients in the safety observation period had received tapentadol. Tapentadol PR was non-inferior to morphine PR (lower limit of confidence interval above negative non-inferiority margin of − 0.2) in Part 1. Rates of adverse events were as expected with nausea (22.2%) and constipation (15.6%) in the tapentadol PR group, and with vomiting (33.3%), nausea and constipation (each 16.7%) in the morphine PR group. No new safety issues were identified; the safety profile of tapentadol over the 12 months treatment and observation periods was comparable to that established in subjects > 18 years old. /
Conclusion: Tapentadol PR was well tolerated and equivalent to morphine PR for both efficacy and safety in children (6 to < 18 years old) requiring long-term treatment with opioids
Revegetation of ski runs in Serbia: Case studies of Mts. Stara Planina and Divčibare
Revegetation is the most sustainable method of soil stabilization at ski runs. In order to establish a stable plant community, it is recommended to use native species. However, non-native species are most often used. In this paper the revegetation of ski runs at two ski resorts is investigated: Divčibare and Stara Planina. Seven species were used for the revegetation of the ski run at the Divčibare ski resort of which six species were native. Six species were used for the revegetation of the Stara Planina ski resort, of which two species were native. It was established that the plant species used in the seed mixtures were suitable for erosion control at the investigated ski resorts
Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber
We study theoretically the generation of photon pairs by spontaneous
four-wave mixing (SFWM) in photonic crystal optical fiber. We show that it is
possible to engineer two-photon states with specific spectral correlation
(``entanglement'') properties suitable for quantum information processing
applications. We focus on the case exhibiting no spectral correlations in the
two-photon component of the state, which we call factorability, and which
allows heralding of single-photon pure-state wave packets without the need for
spectral post filtering. We show that spontaneous four wave mixing exhibits a
remarkable flexibility, permitting a wider class of two-photon states,
including ultra-broadband, highly-anticorrelated states.Comment: 17 pages, 7 figures, submitte
Job quality and work engagement in the cruise industry
This study reviews the working conditions in the emerging cruise industry by using a holistic and systematic approach, as well as the effects on work engagement of two groups of clearly differentiated employees, namely, officers and nonofficer employees. Our sample comprised 353 cruise workers. Regression analysis confirmed the research purposes of this study, that is, seafarers work under poor conditions (especially among nonofficer employees) and that this precarity
determines the engagement of both groups. This study contributes to identifying the job quality dimensions that needs an improvement by human resource managers of cruise line
Neutrophilia and NETopathy as Key Pathologic Drivers of Progressive Lung Impairment in Patients With COVID-19
There is an urgent need for new therapeutic strategies to contain the spread of the novel coronavirus disease 2019 (COVID-19) and to curtail its most severe complications. Severely ill patients experience pathologic manifestations of acute respiratory distress syndrome (ARDS), and clinical reports demonstrate striking neutrophilia, elevated levels of multiple cytokines, and an exaggerated inflammatory response in fatal COVID-19. Mechanical respirator devices are the most widely applied therapy for ARDS in COVID-19, yet mechanical ventilation achieves strikingly poor survival. Many patients, who recover, experience impaired cognition or physical disability. In this review, we argue the need to develop therapies aimed at inhibiting neutrophil recruitment, activation, degranulation, and neutrophil extracellular trap (NET) release. Moreover, we suggest that currently available pharmacologic approaches should be tested as treatments for ARDS in COVID-19. In our view, targeting host-mediated immunopathology holds promise to alleviate progressive pathologic complications of ARDS and reduce morbidities and mortalities in severely ill patients with COVID-19
Armed and accurate: engineering cytotoxic T cells for eradication of leukemia
Translational medicine depends on a rapid and efficient exchange of results between the bench and the bedside. A recent example from the field of cancer immunotherapy highlights the essential nature of this exchange. Methods have been developed to convert a patient's cytotoxic T cells into efficient and specific killers of cancer cells in patients with leukemia. By using recombinant DNA techniques, a lentiviral vector was constructed to express chimeric antigen receptors in cytotoxic T cells from patients with advanced chronic lymphocytic leukemia. The purpose of the chimeric receptors was to direct the cytotoxic T cell activity against cells causing the cancer. The effect of infusing the engineered T cells back into the cancer patients was tested in a Phase I trial at the University of Pennsylvania, and the initial results were described in two articles from the research team of Dr. Carl June. The remarkable success of this trial should energize further applications of biotechnology in the development of new cancer immunotherapies
DNA-dependent Protein Kinase Activity Is Not Required for Immunoglobulin Class Switching
Class switch recombination (CSR), similar to V(D)J recombination, is thought to involve DNA double strand breaks and repair by the nonhomologous end–joining pathway. A key component of this pathway is DNA-dependent protein kinase (DNA-PK), consisting of a catalytic subunit (DNA-PKcs) and a DNA-binding heterodimer (Ku70/80). To test whether DNA-PKcs activity is essential for CSR, we examined whether IgM+ B cells from scid mice with site-directed H and L chain transgenes were able to undergo CSR. Although B cells from these mice were shown to lack DNA-PKcs activity, they were able to switch from IgM to IgG or IgA with close to the same efficiency as B cells from control transgenic and nontransgenic scid/+ mice, heterozygous for the scid mutation. We conclude that CSR, unlike V(D)J recombination, can readily occur in the absence of DNA-PKcs activity. We suggest nonhomologous end joining may not be the (primary or only) mechanism used to repair DNA breaks during CSR
- …