206 research outputs found
Practical Approach for Solving Vibrations of Large Turbine and Generator Rotors - Reconciling the Discord between Theory and Practice
The purpose of this paper is to illustrate a different perspective in viewing and solving vibration problems in large rotating machines regarding the commonly seen discord between theoretical predictions of dynamic behavior, especially the standard predicted and expected "fixes" to many vibration problems, versus observed operation in ractice when unexpected vibration problems still remain or arise anew. The paper will also discuss the key root causes behind this discord with regard to large turbine and generators rotors, and behind unexpected or unexplainable vibration in operation, usually after a major outage. In short, the primary cause in a substantial portion of such cases is the presence of “significant”, axially distributed mass eccentricities inherent to individual rotors, or compound eccentricities from misaligned rotors or bearings. These cases require a different approach versus the methodology traditionally utilized for diagnosing and resolving "unbalance responses” in general, on a variety of rotating machines of different sizes and operating speeds. The paper also presents and describes an improved rotor balancing approach when dealing with such cases. These problems should be ideally resolved in service shops, and when balancing significantly eccentric rotors in balancing facilities, it is necessary to apply a new balancing method using 2N+1 balancing planes, where "N" is the highest mode reached in operation
Avoiding nonlinear responses of turbine-generator rotors in practice
Many instances of vibration that appear as nonlinear turbine-generator rotor behavior in industry are misdiagnosed and unsuccessfully resolved, especially when dealing with rotor systems with "significant" mass eccentricities. This is due in part to the oversimplification or neglecting in standard models of the full effects of distributed eccentricity and torque. Using a new, and thus far qualitative understanding of these effects, excellent success has been seen in resolving otherwise "intractable" turbine-generator vibration problems in power plants
Nitric oxide and proteoglycan biosynthesis by human articular chondrocytes in alginate culture
AbstractInterleukin-1α and β induced the production of large amounts of nitric oxide by normal, human articular chondrocytes in alginate culture; at the same time the biosynthesis of proteoglycan was strongly suppressed. In a dose-dependent manner, NG-monomethyl-l-arginine both inhibited nitric oxide formation and relieved the suppression of proteoglycan synthesis. However concentrations of NG-monomethyl-l-arginine which completely prevented nitric oxide production only partially restored proteoglycan biosynthesis, even at low doses of interleukin-1 where suppression of proteoglycan synthesis was modest. The organic donor of nitric oxide, S-nitrosyl-acetyl-d,l- penicillamine also inhibited proteoglycan biosynthesis, but not as extensively as interleukin-1. These data suggest that interleukin-1 suppresses synthesis of the cartilaginous matrix through more than one mechanism, at least one of which is dependent upon the production of nitric oxide
A framework for experimental determination of localised vertical pedestrian forces on full-scale structures using wireless attitude and heading reference systems
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.A major weakness among loading models for pedestrians walking on flexible structures proposed in
recent years is the various uncorroborated assumptions made in their development. This applies to spatio-
temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this
problem, a framework for the determination of localised pedestrian forces on full-scale structures is
presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad
of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit,
allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a
single point inertial measurement from an AHRS is derived and shown to perform well against
benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not
take any predefined form nor does it require any extrapolations as to the timing and amplitude of
pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a
structure, an algorithm for tracking the point of application of pedestrian force is developed based on data
from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is
conducted on a real footbridge for validation purposes. A remarkably good match between the measured
and simulated bridge response is found, indeed confirming applicability of the proposed framework.The research presented here was funded by EPSRC (grant EP/I029567/2). Authors thank Devon County Council for permitting the experimental campaign to be conducted on Baker Bridge in Exeter, UK, and Dr Erfan Shahabpour (supported by EPSRC grant EP/K03877X/1) for providing access to and assisting with measurements on the ADAL-3D treadmill at the University of Sheffield (funded by EPSRC grant EP/E018734/1)
A framework for experimental determination of localised vertical pedestrian forces on full-scale structures using wireless attitude and heading reference systems
A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework
Muscle Characteristics and Substrate Energetics in Lifelong Endurance Athletes.
The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training.
Thirteen OA (64.8 ± 4.9 yr) exercising 5 times per week or more were compared with 14 YA (27.8 ± 4.9 yr) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase, and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test.
V˙O2peak was lower in OA than YA. The OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, whereas type II fibers were smaller in OA compared with YA. Both groups had similar succinate dehydrogenase content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, carbohydrate-ox was lower in OA but with similar Fat-ox.
Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older with younger athletes matched by exercise mode and frequency
Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content.
OBJECTIVE: We tested the primary hypotheses that sphingolipid and diacylglycerol (DAG) content is higher within insulin-resistant muscle and that the association between intramyocellular triglycerides (IMTG) and insulin resistance is muscle fiber type specific.
RESEARCH DESIGN AND METHODS: A nested case-control analysis was conducted in 22 obese (BMI >30 kg/m(2)) women who were classified as insulin-resistant (IR; n = 12) or insulin-sensitive (IS; n = 10), determined by hyperinsulinemic-euglycemic clamp (>30% greater in IS compared with IR, P < 0.01). Sphingolipid and DAG content was determined by high-performance liquid chromatography-tandem mass spectrometry. Fiber type-specific IMTG content was histologically determined. Gene expression was determined by quantitative PCR.
RESULTS: Total (555 +/- 53 vs. 293 +/- 54 pmol/mg protein, P = 0.004), saturated (361 +/- 29 vs. 179 +/- 34 pmol/mg protein, P = 0.001), and unsaturated (198 +/- 29 vs. 114 +/- 21 pmol/mg protein, P = 0.034) ceramides were higher in IR compared with IS. DAG concentrations, however, were similar. IMTG content within type I myocytes, but not type II myocytes, was higher in IR compared with IS subjects (P = 0.005). Insulin sensitivity was negatively correlated with IMTG within type I myocytes (R = -0.51, P = 0.026), but not with IMTG within type II myocytes. The proportion of type I myocytes was lower (41 vs. 59%, P < 0.01) in IR subjects. Several genes involved in lipid droplet and fatty acid metabolism were differentially expressed in IR compared with IS subjects.
CONCLUSIONS: Human skeletal muscle insulin resistance is related to greater IMTG content in type I but not type II myocytes, to greater ceramide content, and to alterations in gene expression associated with lipid metabolism
Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide.
AIMS/HYPOTHESIS: Intramyocellular lipids, including diacylglycerol (DAG) and ceramides, have been linked to insulin resistance. This randomised repeated-measures study examined the effects of diet-induced weight loss (DIWL) and aerobic exercise (EX) on insulin sensitivity and intramyocellular triacylglycerol (IMTG), DAG and ceramide.
METHODS: Sixteen overweight to obese adults (BMI 30.6 ± 0.8; 67.2 ± 4.0 years of age) with either impaired fasting glucose, or impaired glucose tolerance completed one of two lifestyle interventions: DIWL (n = 8) or EX (n = 8). Insulin sensitivity was determined using hyperinsulinaemic-euglycaemic clamps. Intramyocellular lipids were measured in muscle biopsies using histochemistry and tandem mass spectrometry.
RESULTS: Insulin sensitivity was improved with DIWL (20.6 ± 4.7%) and EX (19.2 ± 12.9%). Body weight and body fat were decreased by both interventions, with greater decreases in DIWL compared with EX. Muscle glycogen, IMTG content and oxidative capacity were all significantly (p < 0.05) decreased with DIWL and increased with EX. There were decreases in DAG with DIWL (-12.4 ± 14.6%) and EX (-40.9 ± 12.0%). Ceramide decreased with EX (-33.7 ± 11.2%), but not with DIWL. Dihydroceramide was decreased with both interventions. Sphingosine was decreased only with EX. Changes in total DAG, total ceramides and other sphingolipids did not correlate with changes in glucose disposal. Stearoyl-coenzyme A desaturase 1 (SCD1) content was decreased with DIWL (-19.5 ± 8.5%, p < 0.05), but increased with EX (19.6 ± 7.4%, p < 0.05). Diacylglycerol acyltransferase 1 (DGAT1) was unchanged with the interventions.
CONCLUSIONS/INTERPRETATION: Diet-induced weight loss and exercise training both improved insulin resistance and decreased DAG, while only exercise decreased ceramides, despite the interventions having different effects on IMTG. These alterations may be mediated through differential changes in skeletal muscle capacity for oxidation and triacylglycerol synthesis.
TRIAL REGISTRATION: ClinicalTrials.gov NCT00766298
Anti-inflammatory and neuroprotective properties of the corticosteroid fludrocortisone in retinal degeneration
The pathogenesis of outer retinal degenerations has been linked to the elevation of cytokines that orchestrate pro-inflammatory responses within the retinal milieu, and which are thought to play a role in diseases such as geographic atrophy (GA), an advanced form of AMD. Here we sought investigate the anti-inflammatory and mechanistic properties of fludrocortisone (FA), as well as triamcinolone acetonide (TA), on Müller cell-mediated cytokine expression in response to inflammatory challenge. In addition, we investigated the neuroprotective efficacy of FA and TA in a photo-oxidative damage (PD), a model of outer retinal degeneration. Expression of CCL2, IL-6, and IL-8 with respect to FA and TA were assessed in Müller cells in vitro, following simulation with IL-1β or TNF-α. The dependency of this effect on mineralocorticoid and glucocorticoid signaling was also interrogated for both TA and TA via co-incubation with steroid receptor antagonists. For the PD model, C57BL/6 mice were intravitreally injected with FA or TA, and changes in retinal pathology were assessed via electroretinogram (ERG) and optical coherence tomography (OCT). FA and TA were found to dramatically reduce the expression of CCL2, IL-6, and IL-8 in Müller glia in vitro after inflammatory challenge with IL-1β or TNF-α (P 0.05). Our data indicate potent anti-inflammatory and mechanistic properties of corticosteroids, specifically FA, in suppressing inflammation and neurodegeneration degeneration associated with outer retinal atrophy. Taken together, our findings indicate that corticosteroids such as FA may have value as a potential therapeutic for outer retinal degenerations where such pro-inflammatory factors are implicated, including AMD
Calorie Restriction-induced Weight Loss and Exercise Have Differential Effects on Skeletal Muscle Mitochondria Despite Similar Effects on Insulin Sensitivity.
Skeletal muscle insulin resistance and reduced mitochondrial capacity have both been reported to be affected by aging. The purpose of this study was to compare the effects of calorie restriction-induced weight loss and exercise on insulin resistance, skeletal muscle mitochondrial content, and mitochondrial enzyme activities in older overweight to obese individuals.
Insulin-stimulated rates of glucose disposal (Rd) were determined using the hyperinsulinemic euglycemic clamp before and after completing 16 weeks of either calorie restriction to induce weight loss (N = 7) or moderate exercise (N = 10). Mitochondrial volume density, mitochondria membrane content (cardiolipin), and activities of electron transport chain (rotenone-sensitive NADH-oxidase), tricarboxylic acid (TCA) cycle (citrate synthase) and β-oxidation pathway (β-hydroxyacyl CoA dehydrogenase; β-HAD) were measured in percutaneous biopsies of the vastus lateralis before and after the interventions.
Rd improved similarly (18.2% ± 9.0%, p < .04) with both weight loss and exercise. Moderate exercise significantly increased mitochondrial volume density (14.5% ± 2.0%, p < .05), cardiolipin content (22.5% ± 13.4%, p < .05), rotenone-sensitive NADH-oxidase (65.7% ± 13.2%, p = .02) and β-HAD (30.7% ± 6.8%, p ≤ .03) activity, but not citrate synthase activity (10.1% ± 4.0%). In contrast, calorie restriction-induced weight loss did not affect mitochondrial content, NADH-oxidase or β-HAD, yet increased citrate synthase activity (44.1% ± 21.1%, p ≤ .04). Exercise (increase) or weight loss (decrease) induced a remodeling of cardiolipin with a small (2%-3%), but significant change in the relative content of tetralinoleoyl cardiolipin.
Exercise increases both mitochondria content and mitochondrial electron transport chain and fatty acid oxidation enzyme activities within skeletal muscle, while calorie restriction-induced weight loss did not, despite similar improvements in insulin sensitivity in overweight older adults
- …