109 research outputs found

    ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The T antigen is a tumor-associated structure whose sialylated form (the sialyl-T antigen) involves the altered expression of sialyltransferases and has been related with worse prognosis. Since little or no information is available on this subject, we investigated the regulation of the sialyltransferases, able to sialylate the T antigen, in bladder cancer progression.</p> <p>Methods</p> <p>Matched samples of urothelium and tumor tissue, and four bladder cancer cell lines were screened for: <it>ST3Gal.I</it>, <it>ST3Gal.II </it>and <it>ST3Gal.IV </it>mRNA level by real-time PCR. Sialyl-T antigen was detected by dot blot and flow cytometry using peanut lectin. Sialyltransferase activity was measured against the T antigen in the cell lines.</p> <p>Results</p> <p>In nonmuscle-invasive bladder cancers, <it>ST3Gal.I </it>mRNA levels were significantly higher than corresponding urothelium (p < 0.001) and this increase was twice more pronounced in cancers with tendency for recurrence. In muscle-invasive cancers and matching urothelium, <it>ST3Gal.I </it>mRNA levels were as elevated as nonmuscle-invasive cancers. Both non-malignant bladder tumors and corresponding urothelium showed <it>ST3Gal.I </it>mRNA levels lower than all the other specimen groups. A good correlation was observed in bladder cancer cell lines between the <it>ST3Gal.I </it>mRNA level, the ST activity (r = 0.99; p = 0.001) and sialyl-T antigen expression, demonstrating that sialylation of T antigen is attributable to ST3Gal.I. The expression of sialyl-T antigens was found in patients' bladder tumors and urothelium, although without a marked relationship with mRNA level. The two <it>ST3Gal.I </it>transcript variants were also equally expressed, independently of cell phenotype or malignancy.</p> <p>Conclusion</p> <p>ST3Gal.I plays the major role in the sialylation of the T antigen in bladder cancer. The overexpression of <it>ST3Gal.I </it>seems to be part of the initial oncogenic transformation of bladder and can be considered when predicting cancer progression and recurrence.</p

    Induction of Epithelial Mesenchimal Transition and Vasculogenesis in the Lenses of Dbl Oncogene Transgenic Mice

    Get PDF
    BACKGROUND: The Dbl family of proteins represents a large group of proto-oncogenes involved in cell growth regulation. The numerous domains that are present in many Dbl family proteins suggest that they act to integrate multiple inputs in complicated signaling networks involving the Rho GTPases. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders and neoplastic transformation. We generated transgenic mice introducing the cDNA of Dbl oncogene linked to the metallothionein promoter into the germ line of FVB mice and found that onco-Dbl expression in mouse lenses affected proliferation, migration and differentiation of lens epithelial cells. RESULTS: We used high density oligonucleotide microarray to define the transcriptional profile induced by Dbl in the lenses of 2 days, 2 weeks, and 6 weeks old transgenic mice. We observed modulation of genes encoding proteins promoting epithelial-mesenchymal transition (EMT), such as down-regulation of epithelial cell markers and up-regulation of fibroblast markers. Genes encoding proteins involved in the positive regulation of apoptosis were markedly down regulated while anti-apoptotic genes were strongly up-regulated. Finally, several genes encoding proteins involved in the process of angiogenesis were up-regulated. These observations were validated by histological and immunohistochemical examination of the transgenic lenses where vascularization can be readily observed. CONCLUSION: Onco-Dbl expression in mouse lens correlated with modulation of genes involved in the regulation of EMT, apoptosis and vasculogenesis leading to disruption of the lens architecture, epithelial cell proliferation, and aberrant angiogenesis. We conclude that onco-Dbl has a potentially important, previously unreported, capacity to dramatically alter epithelial cell migration, replication, polarization and differentiation and to induce vascularization of an epithelial tissue

    ‘Can I be a kinky ace?’: How asexual people negotiate their experiences of kinks and fetishes

    Get PDF
    Prior research has found that asexual people may fantasise or participate in activities typically conceptualised as ‘sexual’. These behaviours may be considered paradoxical when an asexual person is conceptualised as someone who does not experience sexual attraction or desire. This research aimed to explore how kinks and fetishes are conceptualised, experienced, and negotiated by asexual individuals. Forty-eight participants were recruited to take part in an online qualitative survey. Thematic analysis resulted in three themes. In “Am I asexual?”: (How) can you be a kinky ace?, we discuss the sense of dissonance which some participants reported in negotiating what was seemingly the paradox between their self-identity as asexual and their exploration of kinks and fetishes. In the second theme, Between me and me’ and make believe: Kinks and fetishes as solo and imaginary, we report on how kinks, fetishes, and fantasies were often understood in a solitary context and as either undesirable – or impossible – to live out. In the final theme, Kink as a sensual enhancement in relationships, we highlight how participants positioned kinks and fetishes as an agent for intimacy. These findings expand our knowledge of how asexual people negotiate kinks and fetishes and capture the complexities of asexual identities

    Anomalous yet Brownian

    No full text
    We describe experiments using single-particle tracking in which mean-square displacement is simply proportional to time (Fickian), yet the distribution of displacement probability is not Gaussian as should be expected of a classical random walk but, instead, is decidedly exponential for large displacements, the decay length of the exponential being proportional to the square root of time. The first example is when colloidal beads diffuse along linear phospholipid bilayer tubes whose radius is the same as that of the beads. The second is when beads diffuse through entangled F-actin networks, bead radius being less than one-fifth of the actin network mesh size. We explore the relevance to dynamic heterogeneity in trajectory space, which has been extensively discussed regarding glassy systems. Data for the second system might suggest activated diffusion between pores in the entangled F-actin networks, in the same spirit as activated diffusion and exponential tails observed in glassy systems. But the first system shows exceptionally rapid diffusion, nearly as rapid as for identical colloids in free suspension, yet still displaying an exponential probability distribution as in the second system. Thus, although the exponential tail is reminiscent of glassy systems, in fact, these dynamics are exceptionally rapid. We also compare with particle trajectories that are at first subdiffusive but Fickian at the longest measurement times, finding that displacement probability distributions fall onto the same master curve in both regimes. The need is emphasized for experiments, theory, and computer simulation to allow definitive interpretation of this simple and clean exponential probability distribution
    corecore