160 research outputs found

    European LeukemiaNet laboratory recommendations for the diagnosis and management of chronic myeloid leukemia

    Get PDF
    From the laboratory perspective, effective management of patients with chronic myeloid leukemia (CML) requires accurate diagnosis, assessment of prognostic markers, sequential assessment of levels of residual disease and investigation of possible reasons for resistance, relapse or progression. Our scientific and clinical knowledge underpinning these requirements continues to evolve, as do laboratory methods and technologies. The European LeukemiaNet convened an expert panel to critically consider the current status of genetic laboratory approaches to help diagnose and manage CML patients. Our recommendations focus on current best practice and highlight the strengths and pitfalls of commonly used laboratory tests

    DYNAMICS OF EXPANSION OF TYROSINE KINASE INHIBITOR-RESISTANT MUTANTS AS ASSESSED BY DEEP SEQUENCING OF THE BCR-ABL KINASE DOMAIN: IMPLICATIONS FOR ROUTINE MUTATION TESTING

    Get PDF
    Background: In Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) patients (pts), efficacy of tyrosine kinase inhibitor (TKI)-based therapies is often compromised by selection of resistant mutations in the BCR-ABL kinase domain (KD). Currently, the gold standard for BCR-ABL KD mutation screen- ing is conventional Sanger sequencing (SS). However, more sensitive approaches are desirable to allow more timely and rational therapeutic intervention. Aims: A Deep sequencing (DS) strategy based on the Roche 454 next-generation sequencing technology was set up in order to: study the dynamics of expansion of different types of BCR-ABL KD mutations in Ph+ ALL patients developing resistance to TKI-based therapies; test the ability of DS to highlight emerging clones harboring TKI-resistant mutations. Methods: 29 Ph+ ALL pts who had developed resistance to TKI-based (imatinib, dasatinib, nilotinib) therapies were selected for this retrospective analysis. All the pts were known to have developed TKI-resistant BCR-ABL mutations on treatment, as assessed by SS. To reconstruct the dynamics of mutation emergence, longitudinal re-analysis of samples from relapse backwards (n=97; 1-3 months sampling interval) was performed on a Roche GS Junior instru- ment. DS runs were designed so as to enable high sensitivity mutation calling (minimum target sequence coverage 4,000 reads). However, to minimize the likelihood of false positive results, data were analyzed filtering out all variants with <1% abundance. Results: DS could successfully detect all the mutations (n=85) previously identified by SS (>15% abundance). In addition, DS revealed that both those samples that had been scored as apparently wild-type by SS and those samples already known to harbor mutations as assessed by SS might be carrying one or more ‘lower level’ mutations (<15% abundance). In the latter cases, clonal analysis showed complex textures with the same mutation alone and also in combination with other(s) (‘compound’ mutations) in distinct subclones. Some lower level mutations were silent or apparently irrelevant from a clinical standpoint (passenger mutations?). In more than half of the cases, however, known TKI-resistant variants could be recognized that corresponded either to ‘withdrawing’ mutants not (yet) entirely de-selected by the switch in TKI or to outgrowing mutations anticipating an imminent relapse. Lower level mutations were confirmed with independent methods (ASO-PCR, RFLP). Notably, in 16/29 (55%) pts with molecularly detectable disease but not yet evidence of cytogenetic or hematologic relapse, DS could identify emerging mutations 1 to 3 months before they became detectable by SS. In the remaining 13 pts, however, outgrowth of the TKI-resistant mutation (T315I=7, Y253H=2, E255K=2, E255V=1 and F317L=1) was so rapid that not even a strict monthly monitoring could have allowed to pick them up before they became dominant. Summary / Conclusion: Now that multiple options are available, BCR-ABL KD mutation monitoring is a precious tool to maximize the efficacy of TKI-based regimens as induction or salvage therapy of Ph+ ALL. DS proved as reliable as SS for the detection of mutations with >15% abundance. As a key advantage, DS added precious quantitative and qualitative information on the full repertoire of mutated populations, that SS underestimated in more than half of the samples analyzed. TKI-resistant mutations leading to patient relapse were not necessarily preexisting at diagnosis or at the time of switchover to another TKI, underlining the importance of regular monitoring of pts. Although the majority of mutations were found to arise and take over very rapidly, a monthly monitoring by our DS approach would have allowed to identify them earlier than SS actually did - and well in advance of clinical relapse - in half of the pts. DS technologies would enable higher sensitivity mutation calling: further studies are warranted to determine the optimal lower detection limit to aim to in order to exclude both transient mutant subclones that will never take over and sequencing errors

    Unraveling the complexity of tyrosine kinase inhibitor-resistant populations by ultra-deep sequencing of the BCR-ABL kinase domain

    Get PDF
    In chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, tyrosine kinase inhibitor (TKI) therapy may select for drug-resistant BCR-ABL mutants. We used an ultra-deep sequencing (UDS) approach to resolve qualitatively and quantitatively the complexity of mutated populations surviving TKIs and to investigate their clonal structure and evolution over time in relation to therapeutic intervention. To this purpose, we performed a longitudinal analysis of 106 samples from 33 patients who had received sequential treatment with multiple TKIs and had experienced sequential relapses accompanied by selection of 1 or more TKI-resistant mutations. We found that conventional Sanger sequencing had misclassified or underestimated BCR-ABL mutation status in 55% of the samples, where mutations with 1% to 15% abundance were detected. A complex clonal texture was uncovered by clonal analysis of samples harboring multiple mutations and up to 13 different mutated populations were identified. The landscape of these mutated populations was found to be highly dynamic. The high degree of complexity uncovered by UDS indicates that conventional Sanger sequencing might be an inadequate tool to assess BCR-ABL kinase domain mutation status, which currently represents an important component of the therapeutic decision algorithms. Further evaluation of the clinical usefulness of UDS-based approaches is warranted

    Alcohol dose in septal ablation for hypertrophic obstructive cardiomyopathy

    Full text link
    Background: The aim of this study was to evaluate short- and long-term outcomes related to dose of alcohol administered during alcohol septal ablation (ASA) in patients with hypertrophic obstructive cardiomyopathy (HOCM). Current guidelines recommend using 1–3 mL of alcohol administered in the target septal perforator artery, but this recommendation is based more on practical experience of interventionalists rather than on systematic evidence. Methods: We included 1448 patients and used propensity score to match patients who received a low-dose (1.0–1.9 mL) versus a high-dose (2.0–3.8 mL) of alcohol during ASA. Results: The matched cohort analysis comprised 770 patients (n = 385 in both groups). There was a similar occurrence of 30-day post-procedural adverse events (13% vs. 12%; p = 0.59), and similar all-cause mortality rates (0.8% vs. 0.5%; p = 1) in the low-dose group and the high-dose group, respectively. In the long-term follow-up (5.4 ± 4.5 years), a total of 110 (14%) patients died representing 2.58 deaths and 2.64 deaths per 100 patient-years in the low dose and the high dose group (logrank, p = 0.92), respectively. There were no significant differences in the long-term dyspnea and left ventricular outflow gradient between the two groups. Patients treated with a low-dose of alcohol underwent more subsequent septal reduction procedures (logrank, p = 0.04). Conclusions: Matched HOCM patients undergoing ASA with a low-dose (1.0–1.9 mL) or a high-dose (2.0–3.8 mL) of alcohol had similar short- and long-term outcomes. A higher rate of repeated septal reduction procedures was observed in the group treated with a low-dose of alcohol. © 2021 The Author

    Coding variants in NOD-like receptors: An association study on risk and survival of colorectal cancer

    Get PDF
    Nod-like receptors (NLRs) are important innate pattern recognition receptors and regulators of inflammation or play a role during development. We systematically analysed 41 non-synonymous single nucleotide polymorphisms (SNPs) in 21 NLR genes in a Czech discovery cohort of sporadic colorectal cancer (CRC) (1237 cases, 787 controls) for their association with CRC risk and survival. Five SNPs were found to be associated with CRC risk and eight with survival at 5% significance level. In a replication analysis using data of two large genome-wide association studies (GWASs) from Germany (DACHS: 1798 cases and 1810 controls) and Scotland (2210 cases and 9350 controls) the associations found in the Czech discovery set were not confirmed. However, expression analysis in human gut-related tissues and immune cells revealed that the NLRs associated with CRC risk or survival in the discovery set were expressed in primary human colon or rectum cells, CRC tissue and/or cell lines, providing preliminary evidence for a potential involvement of NLRs in general in CRC development and/or progression. Most interesting was the finding that the enigmatic development-related NLRP5 (also known as MATER) was not expressed in normal colon tissue but in colon cancer tissue and cell lines. Future studies may show whether regulatory variants instead of coding variants might affect the expression of NLRs and contribute to CRC risk and survival

    Outcomes of Patients With Hypertrophic Obstructive Cardiomyopathy and Pacemaker Implanted After Alcohol Septal Ablation

    Full text link
    Background: Atrioventricular block is a frequent major complication after alcohol septal ablation (ASA). Objectives: The aim of this study was to evaluate the outcomes of patients with implanted permanent pacemaker (PPM) related to a high-grade atrioventricular block after ASA for hypertrophic obstructive cardiomyopathy. Methods: We used a multinational registry (the Euro-ASA registry) to evaluate the outcome of patients with PPM after ASA. Results: A total of 1,814 patients were enrolled and followed up for 5.0 ± 4.3 years (median = 4.0 years). A total of 170 (9.4%) patients underwent PPM implantation during the first 30 days after ASA. Using propensity score matching, 139 pairs (n = 278) constituted the matched PPM and non-PPM groups. Between the matched groups, there were no long-term differences in New York Heart Association functional class (1.5 ± 0.7 vs 1.5 ± 0.9, P = 0.99) and survival (log-rank P = 0.47). Patients in the matched PPM group had lower long-term left ventricular (LV) outflow gradient (12 ± 12 mm Hg vs 17 ± 19 mm Hg, P < 0.01), more pronounced LV outflow gradient decrease (81% ± 17% vs 72% ± 35%, P < 0.01), and lower LV ejection fraction (64% ± 8% vs 66% ± 8%, P = 0.02) and were less likely to undergo reintervention (re-ASA or myectomy) (log-rank P = 0.02). Conclusions: Patients with hypertrophic obstructive cardiomyopathy treated with ASA have a 9% probability of PPM implantation within 30 days after ASA. In long-term follow-up, patients with PPM had similar long-term survival and New York Heart Association functional class but lower LV outflow gradient, a more pronounced LV outflow gradient decrease, a lower LV ejection fraction, and a lower likelihood of reintervention compared with patients without PPM. © 2022 American College of Cardiology Foundatio
    corecore